Add like
Add dislike
Add to saved papers

Silver/silver chloride nanoparticles inhibit the proliferation of human glioblastoma cells.

Cytotechnology 2018 September 11
Glioblastomas (GBM) are aggressive brain tumors with very poor prognosis. While silver nanoparticles represent a potential new strategy for anticancer therapy, the silver/silver chloride nanoparticles (Ag/AgCl-NPs) have microbicidal activity, but had not been tested against tumor cells. Here, we analyzed the effect of biogenically produced Ag/AgCl-NPs (from yeast cultures) on the proliferation of GBM02 glioblastoma cells (and of human astrocytes) by automated, image-based high-content analysis (HCA). We compared the effect of 0.1-5.0 µg mL-1 Ag/AgCl-NPs with that of 9.7-48.5 µg mL-1 temozolomide (TMZ, chemotherapy drug currently used to treat glioblastomas), alone or in combination. At higher concentrations, Ag/AgCl-NPs inhibited GBM02 proliferation more effectively than TMZ (up to 82 and 62% inhibition, respectively), while the opposite occurred at lower concentrations (up to 23 and 53% inhibition, for Ag/AgCl-NPs and TMZ, respectively). The combined treatment (Ag/AgCl-NPs + TMZ) inhibited GBM02 proliferation by 54-83%. Ag/AgCl-NPs had a reduced effect on astrocyte proliferation compared with TMZ, and Ag/AgCl-NPs + TMZ inhibited astrocyte proliferation by 5-42%. The growth rate and population doubling time analyses confirmed that treatment with Ag/AgCl-NPs was more effective against GBM02 cells than TMZ (~ 67-fold), and less aggressive to astrocytes, while Ag/AgCl-NP + TMZ treatment was no more effective against GBM02 cells than Ag/AgCl-NPs monotherapy. Taken together, our data indicate that 2.5 µg mL-1 Ag/AgCl-NPs represents the safest dose tested here, which affects GBM02 proliferation, with limited effect on astrocytes. Our findings show that HCA is a useful approach to evaluate the antiproliferative effect of nanoparticles against tumor cells.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app