Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

NO-Dependent Akt Inactivation by S-Nitrosylation as a Possible Mechanism of STZ-Induced Neuronal Insulin Resistance.

Sporadic Alzheimer's disease (sAD) is associated with energy metabolism deficiency and impairment of insulin receptor (IR) signaling in the brain. In this context, low doses of intracerebroventricular (icv) injection of streptozotocin (STZ) in rodents has been used as an experimental model of sAD which leads to an insulin-resistant brain state and neurodegeneration. However, the STZ effects on brain insulin signaling-related proteins it is not appropriately elucidated. The aim of this study was to evaluate the beginning and progression of alterations in the brain IR pathway of rats after 1, 3, 5, and 7 days of STZ injection and investigate intracellular signaling involved on STZ induced insulin resistance. We observed that STZ injection causes cognitive impairment in the animals, a temporal variation of the insulin signaling-related proteins and apoptosis cell death in the hippocampus. We also have shown that STZ causes insulin resistance and impairment on phosphoinositide 3-kinase (PI3K) activity in the Neuro-2a cells through protein kinase B (Akt) inactivation by S-nitrosylation, which could upregulate GSK3-β activity. STZ ability to cause an insulin-resistant neuron state involves NO production and ROS production which may play an important role in the mechanism linked to STZ-induced neurotoxicity. The icv injection of STZ model and STZ exposed Neuro-2a cells may be potential experimental models for assessing molecules related to the pathogenesis of sAD.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app