Add like
Add dislike
Add to saved papers

Ascorbic acid leads to glycation and interferes with neurite outgrowth.

Ascorbic acid better known as vitamin C, is a reducing carbohydrate needed for a variety of functions in the human body. The most important characteristic of ascorbic acid is the ability to donate two electrons, predestining it as a major player in balancing the physiological redox state and as a necessary cofactor in multiple enzymatic hydroxylation processes. Ascorbic acid can be reversibly oxidized in two steps, leading to semidehydroascorbic acid and dehydroascorbic acid, respectively. Further degradation is irreversible and generates highly reactive carbonyl-intermediates. These intermediates are able to induce glycation of proteins, a non-enzymatic and unspecific reaction of carbonyls with amino groups involved to several age-related diseases. In this study, we investigated the effect of ascorbic acid- and dehydroascorbic acid-induced glycation on PC12 cells, which represent a model for neuronal plasticity. We found that both applications of ascorbic acid or dehydroascorbic acid leads to glycation of cellular proteins, but that ascorbic acid interferes more with viability and neurite outgrowth compared with dehydroascorbic acid.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app