Add like
Add dislike
Add to saved papers

Mutational analyses for product specificity of YjiC towards α-mangostin mono-glucoside.

Glycosyltransferases (GTs) are key enzymes for the post-modification of secondary metabolites in drug development processes. In our prior research, an one-pot enzymatic system produced α-mangostin 3,6-di-O-β-D-glucopyranoside (Mg1) at a higher proportion using wild-type glycosyltransferase (YjiC) but α-mangostin 3-O-β-D-glucopyranoside (Mg2) exhibited markedly higher anti-bacterial activities. This study focuses on a Bacillus licheniformis-originated flexible glycosyltransferase by mutagenesis to examine the active site residues involved in glycosylation for a product specificity towards Mg2. The generated H298A, H298S, and H298C mutants of YjiC exhibited a regiospecificity towards glycosylated product (Mg2) and were targeted in this study. The production pattern of Mg1 decreased to 63 (H298A), 85 (H298S) and 95% (H298C) yields compared to the wild-type YjiC. The increase of uridine 5'-diphosphate (UDP) leading to the inhibition of enzyme activity and production of uridine 5'-diphosphate glucose (UDP-glucose) in overall system was critical for the specific glycosylated product formation rate. H298A, H298S, and H298C mutants and YjiC exhibited 244, 251, and 186% increases in Mg2 production yields, respectively. And also H298A, H298S, and H298C showed 281, 279, and 251% increases in yield of Mg3 compared with wild type YjiC, respectively. There was improved conversion of both mono-glucosides product (Mg2a and Mg3) than di-glucosides products. The H298 mutants were found to overcome the limitation of the wild-type YjiC for regioselective synthesis of Mg2 by an enzymatic system.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app