Add like
Add dislike
Add to saved papers

Ultra-Broadband Flexible Photodetector Based on Topological Crystalline Insulator SnTe with High Responsivity.

Small 2018 September
Topological crystalline insulators (TCIs) are predicted to be a promising candidate material for ultra-broadband photodetectors ranging from ultraviolet (UV) to terahertz (THz) due to its gapless surface state and narrow bulk bandgap. However, the low responsivity of TCIs-based photodetectors limits their further applications. In this regard, a high-performance photodetector based on SnTe, a recently developed TCI, working in a broadband wavelength range from deep UV to mid-IR with high responsivity is reported. By taking advantage of the strong light absorption and small bandgap of SnTe, photodetectors based on the as-grown SnTe crystalline nanoflakes as well as specific short channel length achieve a high responsivity (71.11 A W-1 at 254 nm, 49.03 A W-1 at 635 nm, 10.91 A W-1 at 1550 nm, and 4.17 A W-1 at 4650 nm) and an ultra-broad spectral response (254-4650 nm) simultaneously. Moreover, for the first time, a durable flexible SnTe photodetector fabricated directly on a polyethylene terephthalate film is demonstrated. These results prove the great potential of TCIs as a promising material for integrated and flexible optoelectronic devices.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app