Read by QxMD icon Read


Ying-Ying Jiang, Zi-Fei Zhou, Ying-Jie Zhu, Fei-Fei Chen, Bing-Qiang Lu, Wen-Tao Cao, Yong-Gang Zhang, Zheng-Dong Cai, Feng Chen
In vivo mineralization is a multistep process involving mineral-protein complexes and various metastable compounds in vertebrates. In this complex process, the minerals produced in the mitochondrial matrix play a critical role in initiating extracellular mineralization. However, the functional mechanisms of the mitochondrial minerals are still a mystery. Herein, an in vitro enzymatic reaction strategy is reported for the generation of biomimic amorphous calcium phosphate (EACP) nanominerals by an alkaline phosphatase (ALP)-catalyzed hydrolysis of adenosine triphosphate (ATP) in a weakly alkalescent aqueous condition (pH 8...
November 12, 2018: Small
Shenghe Zhao, Jiangsheng Xie, Guanghui Cheng, Yuren Xiang, Houyu Zhu, Wenyue Guo, Han Wang, Minchao Qin, Xinhui Lu, Junle Qu, Jiannong Wang, Jianbin Xu, Keyou Yan
Hybrid perovskite thin films are prone to producing surface vacancies during the film formation, which degrade the stability and photovoltaic performance. Passivation via post-treatment can heal these defects, but present methods are slightly destructive to the bulk of 3D perovskite due to the solvent effect, which hinders fabrication reproducibility. Herein, nondestructive surface/interface passivation using 4-fluoroaniline (FAL) is established. FAL is not only an effective antisolvent candidate for surface modification, but also a large dipole molecule (2...
November 12, 2018: Small
Volker Strauss, Mackenzie Anderson, Chenxiang Wang, Arie Borenstein, Richard B Kaner
High degrees of dispersion are a prerequisite for functional composite materials for applications in electronics such as sensors, charge and data storage, and catalysis. The use of small precursor materials can be a decisive factor in achieving a high degree of dispersion. In this study, carbon nanodots are used to fabricate a homogeneous, finely dispersed Fe2 O3 -graphene composite aerogel in a one-step conversion process from a precursor mixture. The laser-assisted conversion of small size carbon nanodots enables a uniform distribution of 6...
November 12, 2018: Small
Kahyun Sun, Hangil Ko, Hyun-Ha Park, Minho Seong, Sang-Hyeon Lee, Hoon Yi, Hyung Wook Park, Tae-Il Kim, Changhyun Pang, Hoon Eui Jeong
Low-dimensional nanomaterials are widely adopted as active sensing elements for electronic skins. When the nanomaterials are integrated with microscale architectures, the performance of the electronic skin is significantly altered. Here, it is shown that a high-performance flexible and stretchable electronic skin can be produced by incorporating a piezoresistive carbon nanotube composite into a hierarchical topography of micropillar-wrinkle hybrid architectures that mimic wrinkles and folds in human skin. Owing to the unique hierarchical topography of the hybrid architectures, the hybrid electronic skin exhibits versatile and superior sensing performance, which includes multiaxial force detection (normal, bending, and tensile stresses), remarkable sensitivity (20...
November 11, 2018: Small
Jun Xu, Steve Seung-Young Lee, Howon Seo, Liang Pang, Yearin Jun, Ruo-Yu Zhang, Zhong-Yin Zhang, Pilhan Kim, Wooin Lee, Stephen J Kron, Yoon Yeo
Current nanoparticle (NP) drug carriers mostly depend on the enhanced permeability and retention (EPR) effect for selective drug delivery to solid tumors. However, in the absence of a persistent EPR effect, the peritumoral endothelium can function as an access barrier to tumors and negatively affect the effectiveness of NPs. In recognition of the peritumoral endothelium as a potential barrier in drug delivery to tumors, poly(lactic-co-glycolic acid) (PLGA) NPs are modified with a quinic acid (QA) derivative, synthetic mimic of selectin ligands...
November 9, 2018: Small
Shira Roth, Orr Hadass, Meir Cohen, Jasenka Verbarg, Jennifer Wilsey, Amos Danielli
In fluorescence-based assays, usually a target molecule is captured using a probe conjugated to a capture surface, and then detected using a second fluorescently labeled probe. One of the most common capture surfaces is a magnetic bead. However, magnetic beads exhibit strong autofluorescence, which often overlaps with the emission of the reporter fluorescent dyes and limits the analytical performance of the assay. Here, several widely used magnetic beads are photobleached and their autofluorescence is reduced to 1% of the initial value...
November 8, 2018: Small
Bin Yao, Jing Zhang, Xiaoli Fan, Jianping He, Yat Li
Photo-electrochemical water splitting represents a green and environmentally friendly method for producing solar hydrogen. Semiconductor nanomaterials with a highly accessible surface area, reduced charge migration distance, and tunable optical and electronic property are regarded as promising electrode materials to carry out this solar-to-hydrogen process. Since most of the photo-electrochemical reactions take place on the electrode surface or near-surface region, rational engineering of the surface structures, physical properties, and chemical nature of photoelectrode materials could fundamentally change their performance...
November 8, 2018: Small
Andreas Spinnrock, David Schupp, Helmut Cölfen
Nanoparticle gradient materials are a unique class of functional materials. They combine the specific properties of nanoparticles with macroscopic materials. A continuous spatial gradient of the nanoparticle concentration leads to diverse physical property profiles. Therefore, these materials have a remarkable potential for applications in optics, electronics, and sensors. A novel approach for the defined and controlled synthesis of this material class is the fabrication in ultracentrifugal fields. The formation of a nanoparticle gradient by sedimentation in a gelatin solution is monitored online with optical systems inside an analytical ultracentrifuge...
November 6, 2018: Small
Yiseul Ryu, Jung Ae Kang, Dasom Kim, Song-Rae Kim, Seungmin Kim, Seong Ji Park, Seung-Hae Kwon, Kil-Nam Kim, Dong-Eun Lee, Joong-Jae Lee, Hak-Sung Kim
With a growing number of intracellular drug targets and the high efficacy of protein therapeutics, the targeted delivery of active proteins with negligible toxicity is a challenging issue in the field of precision medicine. Herein, a programed assembly of nucleoprotein nanoparticles (NNPs) using DNA and zinc fingers (ZnFs) for targeted protein delivery is presented. Two types of ZnFs with different sequence specificities are genetically fused to a targeting moiety and a protein cargo, respectively. Double-stranded DNA with multiple ZnF-binding sequences is grafted onto inorganic nanoparticles, followed by conjugation with the ZnF-fused proteins, generating the assembly of NNPs with a uniform size distribution and high stability...
November 6, 2018: Small
Zehui Zhang, Ting Li, Yingying Sheng, Lei Liu, Hai-Chen Wu
Cancer biomarkers are expected to be indicative of the occurrence of certain cancer diseases before the tumors form and metastasize. However, many biomarkers can only be acquired in extremely low concentrations, which are often beyond the limit of detection (LOD) of current instruments and technologies. A practical strategy for nanopore sensing of cancer biomarkers in raw human blood down to the femtomolar level is developed here. This strategy first converts the detection of cancer biomarkers to the quantification of copper ions by conducting a sandwich assay involving copper oxide nanoparticles...
November 6, 2018: Small
Jie Zhou, Jiali Yu, Ludi Shi, Zhe Wang, Huichao Liu, Bo Yang, Cuihua Li, Caizhen Zhu, Jian Xu
Flexible energy storage electronics have gained increasing attention in recent years, but the simultaneous acquiring of high volumetric and high areal capacities as well as excellent flexibility in order to truly implement wearable and portable electronics in practice remains challenging. Here, a conductive and highly deformable freestanding all-pseudocapacitive paper electrode (Ti3 C2 Tx /MnO2 NWs) is fabricated by solution processing of hybrid inks based on Ti3 C2 Tx MXene and ultralong MnO2 nanowires. The resulting Ti3 C2 Tx /MnO2 NWs hybrid paper manifests a remarkable areal capacitance of up to 205 mF cm-2 and outstanding volumetric capacitance of 1025 F cm-3 ...
November 6, 2018: Small
Zhenzhong Yang, Phuong-Vu Ong, Yang He, Le Wang, Mark E Bowden, Wu Xu, Timothy C Droubay, Chongmin Wang, Peter V Sushko, Yingge Du
Nonuniform and highly localized Li dendrites are known to cause deleterious and, in many cases, catastrophic effects on the performance of rechargeable Li batteries. However, the mechanisms of cathode failures upon contact with Li metal are far from clear. In this study, using in situ transmission electron microscopy, the interaction of Li metal with well-defined, epitaxial thin films of LiCoO2 , the most widely used cathode material, is directly visualized at an atomic scale. It is shown that a spontaneous and prompt chemical reaction is triggered once Li contact is made, leading to expansion and pulverization of LiCoO2 and ending with the final reaction products of Li2 O and Co metal...
November 6, 2018: Small
Roman Kempt, Agnieszka Kuc, Jae Hyo Han, Jinwoo Cheon, Thomas Heine
2D crystals, single sheets of layered materials, often show distinct properties desired for optoelectronic applications, such as larger and direct band gaps, valley- and spin-orbit effects. Being atomically thin, the low amount of material is a bottleneck in photophysical and photochemical applications. Here, the formation of stacks of 2D crystals intercalated with small surfactant molecules is proposed. It is shown, using first principles calculations, that the very short surfactant methyl amine electronically decouples the layers...
November 5, 2018: Small
Shaofeng Li, Chang Yu, Ying Yang, Xuedan Song, Shuangming Chen, Li Song, Bo Qiu, Juan Yang, Huawei Huang, Wei Guo, Changtai Zhao, Mengdi Zhang, Jieshan Qiu
The emerging phosphate species on the surface or near-surface of electrode materials are versatile and have an intriguing ability for dramatically enhanced electrochemical performance. Unfortunately, the distribution/dispersion of phosphate species still keeps at levels on the exterior not within the interior surface of materials, and the micro-/nanoscale tuning is commonly rarely concerned and its function remains poorly understood. Herein, for the first time, well-dispersed phosphate species up to 70% mass ratio implanted within Ni-doped CoP nanowire matrix are presented via an efficient low-temperature phosphorization strategy...
November 5, 2018: Small
Tian Tian, Chander Shekhar Sharma, Navanshu Ahuja, Matija Varga, Raja Selvakumar, Yen-Ting Lee, Yu-Cheng Chiu, Chih-Jen Shih
Enabling mechanical responsiveness in field-effect transistors (FETs) offers new technological opportunity beyond the reach of existing platforms. Here a new force-sensing concept is proposed by controlling the wettability of a semiconductor surface, referring to the interfacial field-effect transistors (IFETs). An IFET made by superhydrophobic semiconductor nanowires (NWs) sandwiched between a layer of 2D electron gas (2DEG) and a conductive Cassie-Baxter (CB) sessile droplet is designed. Following the hydrostatic deformation of the CB droplet upon mechanical stress, an extremely small elastic modulus of 820 pascals vertical to the substrate plane, or ≈100 times softer than Ecoflex rubbers, enabling an excellent stress detection limit down to <10 pascals and a stress sensitivity of 36 kPa-1 is proposed...
November 4, 2018: Small
Juchan Yang, Dongwoo Kang, Yuju Jeon, Jong Hoon Lee, Hu Young Jeong, Hyeon Suk Shin, Hyun-Kon Song
An oxygen reduction reaction (ORR) catalyst/support system is designed to have Pt nanoparticles nanoconfined in a nanodimensionally limited space. Holey crumpled reduced graphene oxide plates (hCR-rGO) are used as a carbon support for Pt loading. As expected from interparticular Pt-to-Pt distance of Pt-loaded hCR-rGO longer than that of Pt/C (Pt-loaded carbon black as a practical Pt catalyst), the durability of ORR electroactivity along cycles is improved by replacing the widely used carbon black with hCR-rGO...
November 2, 2018: Small
Shaohui Li, Jingwei Chen, Xuefei Gong, Jiangxin Wang, Pooi See Lee
Sodium-ion capacitors (SICs) have received intensive attention due to their high energy density, high power density, long cycle life, and low cost of sodium. However, the lack of high-performance anode materials and the tedious presodiation process hinders the practical applications of SICs. A simple and effective strategy is reported to fabricate a high-performance SIC using Fe1- x S as the anode material and an ether-based electrolyte. The Fe1- x S electrode is found to undergo a reversible intercalation reaction after the first cycle, resulting in fast kinetics and excellent reversibility...
October 30, 2018: Small
Yujin Lee, Byeongyeon Kim, Insung Oh, Sungyoung Choi
Rapid prototyping of microfluidic devices has advanced greatly, along with the development of 3D printing and micromachining technologies. However, peripheral systems for microfluidics still rely on conventional equipment, such as bench-top microscopy and syringe pumps, which limit system modification and further improvements. Herein, optofluidic modular blocks are presented as discrete elements to modularize peripheral optical and fluidic systems and are used for on-demand and open-source prototyping of whole microfluidic systems...
October 30, 2018: Small
Sidra Anis Farooqi, Xianfu Wang, Haoliang Lu, Qun Li, Kai Tang, Yu Chen, Chenglin Yan
Energy storage appliances are active by means of accompanying components for renewable energy resources that play a significant role in the advanced world. To further improve the electrochemical properties of the lithium-ion batteries (LIBs), sodium-ion batteries (SIBs), and lithium-sulfur (Li-S) batteries, the electrochemical detection of the intrinsic mechanisms and dynamics of electrodes in batteries is required to guide the rational design of electrodes. Thus, several researches have conducted in situ investigations and real-time observations of electrode evolution, ion diffusion pathways, and side reactions during battery operation at the nanoscale, which are proven to be extremely insightful...
October 30, 2018: Small
J Cautela, V Lattanzi, L K Månsson, L Galantini, J J Crassous
While colloids have been widely employed as models for atoms and molecules, the current study proposes to extend their use as building blocks for supracolloidal frameworks. Hereby, the self-assembly between highly anisotropic supramolecular microtubules and soft spherical fluorescent microgels is explored using confocal laser scanning microscopy. The influence of the particle size and charge with respect to the catanionic tubule composition, which consists of two oppositely charged bile salt derivatives, is investigated...
October 29, 2018: Small
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"