Add like
Add dislike
Add to saved papers

The immunomodulatory activity of extracellular vesicles derived from endometrial mesenchymal stem cells on CD4+ T cells is partially mediated by TGFbeta.

Endometrial mesenchymal stem cells (endMSCs) reside in the basal and functional layer of human endometrium and participate in tissue remodelling, which is required for maintaining the regenerative capacity of the endometrium. The endMSCs are multipotent stem cells and exhibit immunomodulatory effects. This paper aimed to evaluate the regulatory effects of extracellular vesicles derived from endMSCs (EV-endMSCs) in the setting of T cell activation. In vitro stimulations of lymphocytes were performed in the presence of EV-endMSCs. These in vitro-stimulated lymphocytes were functionally and phenotypically characterized to distinguish CD4+ and CD8+ T cell differentiation subsets. Moreover, the inhibition of TGFβ was performed with neutralizing antibodies. The phenotype and nanoparticle tracking analysis of the EV-endMSCs demonstrated that they are similar in terms of size distribution to other mesenchymal stem cells-derived exosomes. The in vitro assays showed an immunomodulatory potential of these vesicles to counteract the differentiation of CD4+ T cells. The quantification of active TGFβ in EV-endMSCs was found to be very high when compared with extracellular vesicles-free concentrated supernatants. Finally, the neutralization of TGFβ significantly attenuated the immunomodulatory activity of EV-endMSCs. In summary, this is the first report demonstrating that EV-endMSCs exhibit a potent inhibitory effect against CD4+ T cell activation, which is partially mediated by TGFβ signalling.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app