Add like
Add dislike
Add to saved papers

Fluid mixtures in nanotubes.

The aim of the paper is the study of fluid mixtures in nanotubes by the methods of continuum mechanics. The model starts from a statistical distribution in mean-field molecular theory and uses a density expansion of Taylor series. We get a continuous expression of the volume free energy with density's spatial derivatives limited at the second order. The nanotubes can be filled with liquid or vapor according to the chemical characteristics of the walls and of liquid or vapor mixture bulks. An example of a two-fluid mixture constituted of water and ethanol inside carbon nanotubes at 20^{∘}C is considered. When diameters are small enough, nanotubes are filled with a liquid mixture whatever are the liquid or vapor mixture bulks. The carbon wall influences the ratio of the fluid components in favor of ethanol. The fluid mixture flows across nanotubes can be much more important than classical ones and if the external bulk is vapor, then the flow can be several hundred thousand times larger than Poiseuille flow.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app