Read by QxMD icon Read

Physical Review. E

Kai Huang
Wave phenomena in vibrofluidized dry and partially wet granular materials confined in a quasi-two-dimensional geometry are investigated with numerical simulations considering individual particles as hard spheres. Short-ranged cohesive interactions arising from the formation of liquid bridges between adjacent particles are modeled by changing the velocity-dependent coefficient of restitution. Such a change effectively suppresses the formation of surface waves, in agreement with previous experimental observations...
May 2018: Physical Review. E
Bernie D Shizgal
This paper considers two nonequilibrium model systems described by linear Fokker-Planck equations for the time-dependent velocity distribution functions that yield steady state Kappa distributions for specific system parameters. The first system describes the time evolution of a charged test particle in a constant temperature heat bath of a second charged particle. The time dependence of the distribution function of the test particle is given by a Fokker-Planck equation with drift and diffusion coefficients for Coulomb collisions as well as a diffusion coefficient for wave-particle interactions...
May 2018: Physical Review. E
Thanapop Rodjanapanyakul, Fumi Takabatake, Keita Abe, Ibuki Kawamata, Shinichiro M Nomura, Satoshi Murata
We propose a method to control the diffusion speed of DNA molecules with a target sequence in a polymer solution. The interaction between solute DNA and diffusion-suppressing DNA that has been anchored to a polymer matrix is modulated by the concentration of the third DNA molecule called the competitor by a mechanism called toehold exchange. Experimental results show that the sequence-specific modulation of the diffusion coefficient is successfully achieved. The diffusion coefficient can be modulated up to sixfold by changing the concentration of the competitor...
May 2018: Physical Review. E
Mathijs Janssen, Markus Bier
We revisit a classical problem of theoretical electrochemistry: the response of an electric double-layer capacitor (EDLC) subject to a small, suddenly applied external potential. We solve the Debye-Falkenhagen equation to obtain exact expressions for key EDLC quantities: the ionic charge density, the ionic current density, and the electric field. In contrast to earlier works, our results are not restricted to the long-time asymptotics of those quantities. The solutions take the form of infinite sums whose successive terms all decay exponentially with increasingly short relaxation times...
May 2018: Physical Review. E
Dvira Segal
Absorption refrigerators transfer thermal energy from a cold bath to a hot bath without input power by utilizing heat from an additional "work" reservoir. Particularly interesting is a three-level design for a quantum absorption refrigerator, which can be optimized to reach the maximal (Carnot) cooling efficiency. Previous studies of three-level chillers focused on the behavior of the averaged cooling current. Here, we go beyond that and study the full counting statistics of heat exchange in a three-level chiller model...
May 2018: Physical Review. E
Haosen H A Xu, X I A Yang
Fluid motions in the inertial range of isotropic turbulence are fractal, with their space-filling capacity slightly below regular three-dimensional objects, which is a consequence of the energy cascade. Besides the energy cascade, the other often encountered cascading process is the momentum cascade in wall-bounded flows. Despite the long-existing analogy between the two processes, many of the thoroughly investigated aspects of the energy cascade have so far received little attention in studies of the momentum counterpart, e...
May 2018: Physical Review. E
Subhadeep Roy
The present paper deals with a fiber bundle model which consists of a fraction α of infinitely strong fibers. The inclusion of such an unbreakable fraction has been proven to affect the failure process in early studies, especially around a critical value α_{c}. The present work has a twofold purpose: (i) a study of failure abruptness, mainly the brittle to quasibrittle transition point with varying α and (ii) variation of α_{c} as we change the strength of disorder introduced in the model. The brittle to quasibrittle transition is confirmed from the failure abruptness...
May 2018: Physical Review. E
Rongzong Huang, Huiying Wu, Nikolaus A Adams
It is well recognized that there exist additional cubic terms of velocity in the lattice Boltzmann (LB) model based on the standard lattice. In this work, elimination of these cubic terms in the pseudopotential LB model for multiphase flow is investigated, where the force term and density gradient are considered. By retaining high-order (≥3) Hermite terms in the equilibrium distribution function and the discrete force term, as well as introducing correction terms in the LB equation, the additional cubic terms of velocity are entirely eliminated...
May 2018: Physical Review. E
Yusuke Masumoto, Shinji Takesue
We investigate properties of the diffusive motion of an interface in the two-dimensional Ising model in equilibrium or nonequilibrium situations. We focused on the relation between the power spectrum of a time sequence of spins and diffusive motion of an interface which was already clarified in one-dimensional systems with a nonequilibrium phase transition like the asymmetric simple exclusion process. It is clarified that the interface motion is a diffusion process with a drift force toward the higher-temperature side when the system is in contact with heat reservoirs at different temperatures and heat transfers through the system...
May 2018: Physical Review. E
Jia-Qi Dong, Zhou Shen, Yongwen Zhang, Zi-Gang Huang, Liang Huang, Xiaosong Chen
Clique percolation has attracted much attention due to its significance in understanding topological overlap among communities and dynamical instability of structured systems. Rich critical behavior has been observed in clique percolation on Erdős-Rényi (ER) random graphs, but few works have discussed clique percolation on finite dimensional systems. In this paper, we have defined a series of characteristic events, i.e., the historically largest size jumps of the clusters, in the percolating process of adding bonds and developed a new finite-size scaling scheme based on the interval of the characteristic events...
May 2018: Physical Review. E
Qiang Guo, Fahmi Zaïri, Xinglin Guo
The aim of the present paper is to provide a quantitative prediction of the stretch-induced crystallization in natural rubber, the exclusive reason for its history-dependent thermomechanical features. A constitutive model based on a micromechanism inspired molecular chain approach is formulated within the context of the thermodynamic framework. The molecular configuration of the partially crystallized single chain is analyzed and calculated by means of some statistical mechanical methods. The random thermal oscillation of the crystal orientation, considered as a continuous random variable, is treated by means of a representative angle...
May 2018: Physical Review. E
Linlin Fei, Kai H Luo, Qing Li
The cascaded or central-moment-based lattice Boltzmann method (CLBM) proposed in [Phys. Rev. E 73, 066705 (2006)PLEEE81539-375510.1103/PhysRevE.73.066705] possesses very good numerical stability. However, two constraints exist in three-dimensional (3D) CLBM simulations. First, the conventional implementation for 3D CLBM involves cumbersome operations and requires much higher computational cost compared to the single-relaxation-time (SRT) LBM. Second, it is a challenge to accurately incorporate a general force field into the 3D CLBM...
May 2018: Physical Review. E
Haoqi Zhu, Mao-Xiang Wang, Pik-Yin Lai
The population dynamics of two interacting species modeled by the Lotka-Volterra (LV) model with general parameters that can promote or suppress the other species is studied. It is found that the properties of the two species' isoclines determine the interaction of species, leading to six regimes in the phase diagram of interspecies interaction; i.e., there are six different interspecific relationships described by the LV model. Four regimes allow for nontrivial species coexistence, among which it is found that three of them are stable, namely, weak competition, mutualism, and predator-prey scenarios can lead to win-win coexistence situations...
May 2018: Physical Review. E
K K Mon
In this paper, the virial series expansion and constant pressure Monte Carlo method are used to study the longitudinal pressure equation of state for hard spheres in narrow cylindrical pores. We invoke dimensional reduction and map the model into an effective one-dimensional fluid model with interacting internal degrees of freedom. The one-dimensional model is extensive. The Euler relation holds, and longitudinal pressure can be probed with the standard virial series expansion method. Virial coefficients B_{2} and B_{3} were obtained analytically, and numerical quadrature was used for B_{4}...
May 2018: Physical Review. E
H S Sousa, M S S Pereira, I N de Oliveira, J Strečka, M L Lyra
The degree of fermionic entanglement is examined in an exactly solvable Ising-Hubbard ladder, which involves interacting electrons on the ladder's rungs described by Hubbard dimers at half-filling on each rung, accounting for intrarung hopping and Coulomb terms. The coupling between neighboring Hubbard dimers is assumed to have an Ising-like nature. The ground-state phase diagram consists of four distinct regions corresponding to the saturated paramagnetic, the classical antiferromagnetic, the quantum antiferromagnetic, and the mixed classical-quantum phase...
May 2018: Physical Review. E
Saroj Kumar Nandi
The cellular cortex, which is a highly viscous thin cytoplasmic layer just below the cell membrane, controls the cell's mechanical properties, which can be characterized by a hydrodynamic length scale ℓ. Cells actively regulate ℓ via the activity of force-generating molecules, such as myosin II. Here we develop a general theory for such systems through a coarse-grained hydrodynamic approach including activity in the static description of the system providing an experimentally accessible parameter and elucidate the detailed mechanism of how a living system can actively self-regulate its hydrodynamic length scale, controlling the rigidity of the system...
May 2018: Physical Review. E
Leandra S Boucheron, Jacob T Stanley, Yeling Dai, Siheng Sean You, Christopher T Parzyck, Suresh Narayanan, Alec R Sandy, Zhang Jiang, Mati Meron, Binhua Lin, Oleg G Shpyrko
We experimentally probed the stress relaxation of a monolayer of iron oxide nanoparticles at the water-air interface. Upon drop-casting onto a water surface, the nanoparticles self-assembled into islands of two-dimensional hexagonally close packed crystalline domains surrounded by large voids. When compressed laterally, the voids gradually disappeared as the surface pressure increased. After the compression was stopped, the surface pressure (as measured by a Wilhelmy plate) evolved as a function of the film aging time with three distinct timescales...
May 2018: Physical Review. E
B A Malomed, N N Rosanov, S V Fedorov
We consider the evolution of the 2-soliton (breather) of the nonlinear Schrödinger equation on a semi-infinite line with the zero boundary condition and a linear potential, which corresponds to the gravity field in the presence of a hard floor. This setting can be implemented in atomic Bose-Einstein condensates, and in a nonlinear planar waveguide in optics. In the absence of the gravity, repulsion of the breather from the floor leads to its splitting into constituent fundamental solitons, if the initial distance from the floor is smaller than a critical value; otherwise, the moving breather persists...
May 2018: Physical Review. E
S Srinath, J C Vassilicos, C Cuvier, J-P Laval, M Stanislas, J-M Foucaut
On the basis of (i) particle image velocimetry data of a turbulent boundary layer with large field of view and good spatial resolution and (ii) a mathematical relation between the energy spectrum and specifically modeled flow structures, we show that the scalings of the streamwise energy spectrum E_{11}(k_{x}) in a wave-number range directly affected by the wall are determined by wall-attached eddies but are not given by the Townsend-Perry attached eddy model's prediction of these spectra, at least at the Reynolds numbers Re_{τ} considered here which are between 10^{3} and 10^{4}...
May 2018: Physical Review. E
Yue Zhang, Lianhua Zhu, Ruijie Wang, Zhaoli Guo
Recently a discrete unified gas kinetic scheme (DUGKS) in a finite-volume formulation based on the Boltzmann model equation has been developed for gas flows in all flow regimes. The original DUGKS is designed for flows of single-species gases. In this work, we extend the DUGKS to flows of binary gas mixtures of Maxwell molecules based on the Andries-Aoki-Perthame kinetic model [P. Andries et al., J. Stat. Phys. 106, 993 (2002)JSTPBS0022-471510.1023/A:1014033703134. A particular feature of the method is that the flux at each cell interface is evaluated based on the characteristic solution of the kinetic equation itself; thus the numerical dissipation is low in comparison with that using direct reconstruction...
May 2018: Physical Review. E
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"