Read by QxMD icon Read

Physical Review. E

A V Cano, M G Cosenza
We show that chimera states, where differentiated subsets of synchronized and desynchronized dynamical elements coexist, can emerge in networks of hyperbolic chaotic oscillators subject to global interactions. As local dynamics we employ Lozi maps, which possess hyperbolic chaotic attractors. We consider a globally coupled system of these maps and use two statistical quantities to describe its collective behavior: the average fraction of elements belonging to clusters and the average standard deviation of state variables...
March 2017: Physical Review. E
Andreea Panaitescu, Xavier Clotet, Arshad Kudrolli
We investigate the drag experienced by a spherical intruder moving through a medium consisting of granular hydrogels immersed in water as a function of its depth, size, and speed. The medium is observed to display a yield stress with a finite force required to move the intruder in the quasistatic regime at low speeds before rapidly increasing at high speeds. In order to understand the relevant time scales that determine drag, we estimate the inertial number I given by the ratio of the time scales required to rearrange grains due to the overburden pressure and imposed shear and the viscous number J given by the ratio of the time scales required to sediment grains in the interstitial fluid and imposed shear...
March 2017: Physical Review. E
Felix Tabbert, Christian Schelte, Mustapha Tlidi, Svetlana V Gurevich
We report on the dynamics of localized structures in an inhomogeneous Swift-Hohenberg model describing pattern formation in the transverse plane of an optical cavity. This real order parameter equation is valid close to the second-order critical point associated with bistability. The optical cavity is illuminated by an inhomogeneous spatial Gaussian pumping beam and subjected to time-delayed feedback. The Gaussian injection beam breaks the translational symmetry of the system by exerting an attracting force on the localized structure...
March 2017: Physical Review. E
Joshua Barnett, Daniel R Gurevich, Roman O Grigoriev
Channel flow of an incompressible fluid at Reynolds numbers above 2400 possesses a number of different spatially localized solutions that approach laminar flow far upstream and downstream. We use one such relative time-periodic solution, which corresponds to a spatially localized version of a Tollmien-Schlichting wave, to illustrate how the upstream and downstream asymptotics can be computed analytically. In particular, we show that for these spanwise uniform states the asymptotics predict the exponential localization that has been observed for numerically computed solutions of several canonical shear flows but never properly understood theoretically...
March 2017: Physical Review. E
Andrei M Bykov, Donald C Ellison, Sergei M Osipov
Fast collisionless shocks in cosmic plasmas convert their kinetic energy flow into the hot downstream thermal plasma with a substantial fraction of energy going into a broad spectrum of superthermal charged particles and magnetic fluctuations. The superthermal particles can penetrate into the shock upstream region producing an extended shock precursor. The cold upstream plasma flow is decelerated by the force provided by the superthermal particle pressure gradient. In high Mach number collisionless shocks, efficient particle acceleration is likely coupled with turbulent magnetic field amplification (MFA) generated by the anisotropic distribution of accelerated particles...
March 2017: Physical Review. E
D A Faux, P J McDonald
Nuclear-magnetic-resonance (NMR) spin-lattice (T_{1}^{-1}) and spin-spin (T_{2}^{-1}) relaxation rate measurements can act as effective nondestructive probes of the nanoscale dynamics of ^{1}H spins in porous media. In particular, fast-field-cycling T_{1}^{-1} dispersion measurements contain information on the dynamics of diffusing spins over time scales spanning many orders of magnitude. Previously published experimental T_{1}^{-1} dispersions from a plaster paste, synthetic saponite, mortar, and oil-bearing shale are reanalyzed using a model and associated theory which describe the relaxation rate contributions due to the interaction between spin ensembles in quasi-two-dimensional pores...
March 2017: Physical Review. E
Y Kosuga, S-I Itoh, P H Diamond, K Itoh
A calculation which describes the spin-up of toroidal plasmas by the radial propagation of turbulence fronts with broken parallel symmetry is presented. The associated flux of parallel momentum is calculated by using a two-scale direct-interaction approximation in the weak turbulence limit. We show that fluctuation momentum spreads faster than mean flow momentum. Specifically, the turbulent flux of wave momentum is stronger than the momentum pinch. The scattering of fluctuation momentum can induce edge-core coupling of toroidal flows, as observed in experiments...
March 2017: Physical Review. E
Marco Cogoni, Giovanni Busonera, Gianluigi Zanetti
We model a set of point-to-point transports on a network as a system of polydisperse interacting self-avoiding walks (SAWs) over a finite square lattice. The ends of each SAW may be located both at random, uniformly distributed, positions or with one end fixed at a lattice corner. The total energy of the system is computed as the sum over all SAWs, which may represent either the time needed to complete the transport over the network, or the resources needed to build the networking infrastructure. We focus especially on the second aspect by assigning a concave cost function to each site to encourage path overlap...
March 2017: Physical Review. E
Juan P Garrahan
Recent large deviation results have provided general lower bounds for the fluctuations of time-integrated currents in the steady state of stochastic systems. A corollary are so-called thermodynamic uncertainty relations connecting precision of estimation to average dissipation. Here we consider this problem but for counting observables, i.e., trajectory observables which, in contrast to currents, are non-negative and nondecreasing in time (and possibly symmetric under time reversal). In the steady state, their fluctuations to all orders are bound from below by a Conway-Maxwell-Poisson distribution dependent only on the averages of the observable and of the dynamical activity...
March 2017: Physical Review. E
Mónica A García-Ñustes, Juan F Marín, Jorge A González
Nonlinear waves that collide with localized defects exhibit complex behavior. Apart from reflection, transmission, and annihilation of an incident wave, a local inhomogeneity can activate internal modes of solitons, producing many impressive phenomena. In this work we investigate a two-dimensional sine-Gordon model perturbed by a family of localized forces. We observed the formation of bubblelike and droplike structures due to local internal shape mode instabilities. We describe the formation of such structures on the basis of a one-dimensional theory of activation of internal modes of sine-Gordon solitons...
March 2017: Physical Review. E
Yannan Shen, P G Kevrekidis, G P Veldes, D J Frantzeskakis, D DiMarzio, X Lan, V Radisic
In the present work, we explore soliton and roguelike wave solutions in the transmission line analog of a nonlinear left-handed metamaterial. The nonlinearity is expressed through a voltage-dependent, symmetric capacitance motivated by recently developed ferroelectric barium strontium titanate thin-film capacitor designs. We develop both the corresponding nonlinear dynamical lattice and its reduction via a multiple scales expansion to a nonlinear Schrödinger (NLS) model for the envelope of a given carrier wave...
March 2017: Physical Review. E
Hamid Karani, Christian Huber
The present study investigates the role of thermal nonequilibrium on natural convection in a fluid-saturated porous medium heated from below. We conduct high-resolution direct numerical simulation at the pore scale in a two-dimensional regular porous structure by means of the thermal lattice-Boltzmann method (LBM). We perform a combination of linear stability analysis of continuum-scale heat transfer models, and pore-scale and continuum-scale simulations to study the role of thermal conductivity contrasts among phases on natural convection...
March 2017: Physical Review. E
Yoji Kawamura
We formulate a theory for the collective phase reduction of globally coupled noisy dynamical elements exhibiting macroscopic rhythms. We first transform the Langevin-type equation that represents a group of globally coupled noisy dynamical elements into the corresponding nonlinear Fokker-Planck equation and then develop the phase reduction method for limit-cycle solutions to the nonlinear Fokker-Planck equation. The theory enables us to describe the collective dynamics of a group of globally coupled noisy dynamical elements by a single degree of freedom called the collective phase...
March 2017: Physical Review. E
Michel Y Louge
We outline a statistical mechanics of the triple gas-solid-liquid contact line on a rough plane. The analysis regards the neighborhood of the line as a solid dotted with cavities. It adopts the simplest mean-field statistical mechanics, in which each cavity is either full or empty, while being connected to near neighbors by thin necks. The theory predicts equilibrium angles for advance and recession in terms of the Young contact angle and the joint statistical distribution of two quantifiable geometrical parameters representing specific neck cross-section and specific cavity opening...
March 2017: Physical Review. E
Takayuki Narumi, Michio Tokuyama
For short-range attractive colloids, the phase diagram of the kinetic glass transition is studied by time-convolutionless mode-coupling theory (TMCT). Using numerical calculations, TMCT is shown to recover all the remarkable features predicted by the mode-coupling theory for attractive colloids: the glass-liquid-glass reentrant, the glass-glass transition, and the higher-order singularities. It is also demonstrated through the comparisons with the results of molecular dynamics for the binary attractive colloids that TMCT improves the critical values of the volume fraction...
March 2017: Physical Review. E
Nikolaos G Fytas, Panagiotis E Theodorakis, Anastasios Malakis
We use Monte Carlo simulations to study the finite-size scaling behavior of the interfacial adsorption of the two-dimensional square-lattice q-states Potts model. We consider the pure and random-bond versions of the Potts model for q=3,4,5,8, and 10, thus probing the interfacial properties at the originally continuous, weak, and strong first-order phase transitions. For the pure systems our results support the early scaling predictions for the size dependence of the interfacial adsorption at both first- and second-order phase transitions...
March 2017: Physical Review. E
Q C Sherman, P W Voorhees
A phase-field model of an oxide relevant to corrosion resistant alloys for film thicknesses below the Debye length L_{D}, where charge neutrality in the oxide does not occur, is formulated. The phase-field model is validated in the Wagner limit using a sharp interface Gouy-Chapman model for the electrostatic double layer. The phase-field simulations show that equilibrium oxide films below the Wagner limit are charged throughout due to their inability to electrostatically screen charge over the length of the film, L...
March 2017: Physical Review. E
Tomas Koci, Michael Bachmann
In this paper, we investigate the properties of aggregation transitions in the context of generic coarse-grained homopolymer systems. By means of parallel replica-exchange Monte Carlo methods, we perform extensive simulations of systems consisting of up to 20 individual oligomer chains with five monomers each. Using the tools of the versatile microcanonical inflection-point analysis, we show that the aggregation transition is a first-order process consisting of a sequence of subtransitions between intermediate structural phases...
March 2017: Physical Review. E
Takashi Matsushima, Raphael Blumenfeld
The microstructural organization of a granular system is the most important determinant of its macroscopic behavior. Here we identify the fundamental factors that determine the statistics of such microstructures, using numerical experiments to gain a general understanding. The experiments consist of preparing and compacting isotropically two-dimensional granular assemblies of polydisperse frictional disks and analyzing the emergent statistical properties of quadrons-the basic structural elements of granular solids...
March 2017: Physical Review. E
Grant M Rotskoff
We show that current fluctuations in a stochastic pump can be robustly mapped to fluctuations in a corresponding time-independent nonequilibrium steady state. We thus refine a recently proposed mapping so that it ensures equivalence of not only the averages, but also optimal representation of fluctuations in currents and density. Our mapping leads to a natural decomposition of the entropy production in stochastic pumps similar to the "housekeeping" heat. As a consequence of the decomposition of entropy production, the current fluctuations in weakly perturbed stochastic pumps are shown to satisfy a universal bound determined by the steady state entropy production...
March 2017: Physical Review. E
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"