Add like
Add dislike
Add to saved papers

Plant growth chamber design for subambient pCO 2 and δ 13 C studies.

RATIONALE: Subambient pCO2 has persisted across the major Phanerozoic ice ages, including the entire late Cenozoic (ca 30 Ma to present). Stable isotope analysis of plant-derived organic matter is used to infer changes in pCO2 and climate in the geologic past, but a growth chamber that can precisely control environmental conditions, including pCO2 and δ13 C value of CO2 (δ13 CCO2 ) at subambient pCO2 , is lacking.

METHODS: We designed and built five identical chambers specifically for plant growth under stable subambient pCO2 (ca 100 to 400 ppm) and δ13 CCO2 conditions. We tested the pCO2 and δ13 CCO2 stability of the chambers both with and without plants, across two 12-hour daytime experiments and two extended 9-day experiments. We also compared the temperature and relative humidity conditions among the chambers.

RESULTS: The average δ13 CCO2 value within the five chambers ranged from -18.76 to -19.10‰; the standard deviation never exceeded 0.14‰ across any experiment. This represents better δ13 CCO2 stability than that achieved by all previous chamber designs, including superambient pCO2 chambers. Every pCO2 measurement (n = 1225) was within 5% of mean chamber values. The temperature and relative humidity conditions differed by no more than 0.4°C and 1.6%, respectively, across all chambers within each growth experiment.

CONCLUSIONS: This growth chamber design extends the range of pCO2 conditions for which plants can be grown for δ13 C analysis of their tissues at subambient levels. This new capability allows for careful isolation of environmental effects on plant 13 C discrimination across the entire range of pCO2 experienced by terrestrial land plants.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app