Journal Article
Research Support, N.I.H., Extramural
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

PEGylated IL-11 (BBT-059): A Novel Radiation Countermeasure for Hematopoietic Acute Radiation Syndrome.

Health Physics 2018 July
Interleukin-11 was developed to reduce chemotherapy-induced thrombocytopenia; however, its clinical use was limited by severe adverse effects in humans. PEGylated interleukin-11 (BBT-059), developed by Bolder Biotechnology, Inc., exhibited a longer half-life in rodents and induced longer-lasting increases in hematopoietic cells than interleukin-11. A single dose of 1.2 mg kg of BBT-059, administered subcutaneously to CD2F1 mice (12-14 wk, male) was found to be safe in a 14 d toxicity study. The drug demonstrated its efficacy both as a prophylactic countermeasure and a mitigator in CD2F1 mice exposed to Co gamma total-body irradiation. A single dose of 0.3 mg kg, administered either 24 h pre-, 4 h post-, or 24 h postirradiation increased the survival of mice to 70-100% from lethal doses of radiation. Preadministration (-24 h) of the drug conferred a significantly (p < 0.05) higher survival compared to 24 h post-total-body irradiation. There was significantly accelerated recovery from radiation-induced peripheral blood neutropenia and thrombocytopenia in animals pretreated with BBT-059. The drug also increased bone marrow cellularity and megakaryocytes and accelerated multilineage hematopoietic recovery. In addition, BBT-059 inhibited the induction of radiation-induced hematopoietic biomarkers, thrombopoietin, erythropoietin, and Flt-3 ligand. These results indicate that BBT-059 is a promising radiation countermeasure, demonstrating its potential to be used both pre- and postirradiation for hematopoietic acute radiation syndrome with a broad window for medical management in a radiological or nuclear event.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app