Journal Article
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

Growth Rate and Cross-Linking Kinetics of Poly(divinyl benzene) Thin Films Formed via Initiated Chemical Vapor Deposition.

Initiated chemical vapor deposition (iCVD) allows for the formation of highly cross-linked, polymer thin films on a variety of substrates. Here, we study the impact of substrate stage temperature and filament temperature on the deposition and cross-linking characteristics of iCVD from divinyl benzene. Maintaining a constant monomer surface concentration reveals that deposition rates upward of 15 nm/min can be achieved at substrate stage temperatures of 50 °C. The degree of cross-linking is limited by the rate of initiation of the pendant vinyl bonds. At a filament temperature of 200 °C, the pendant vinyl bond conversion is highly sensitive to the surface concentration of initiator radicals. A significant decrease of the pendant vinyl bond conversion is observed with increasing stage temperatures. At higher filament temperatures, the pendant vinyl bond conversion appears to plateau at approximately 50%. However, faster deposition rates yield lower conversion. This trade-off is mitigated by increasing the filament temperature to increase initiator radical production. A higher flux of initiator radicals toward the surface at a constant deposition rate increases the rate of initiation of pendant vinyl bonds and therefore their overall conversion. At a deposition rate of ∼7 nm/min, an increase in the filament temperature from 200 to 240 °C results in an 18% increase in the pendant vinyl bond conversion.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app