Add like
Add dislike
Add to saved papers

Carbon biofixation and lipid composition of an acidophilic microalga cultivated on treated wastewater supplied with different CO 2 levels.

This study evaluated productivity, CO2 biofixation, and lipid content in biomass of the acidophilic microalga Chlamydomonas acidophila LAFIC-004 cultivated with five different carbon dioxide concentrations. The influence of carbon dioxide concentration on nutrient removal and pH was also investigated. Treated wastewater (secondary effluent) was used as culture medium. Five experimental setups were tested: T-0% - injection of atmospheric air (0.038% CO2 ), T-5% (5% CO2 ), T-10% (10% CO2 ), T-15% (15% CO2 ) and T-20% (20% CO2 ). The T-5% and T-10% experiments showed the highest values of productivity and CO2 biofixation, and maximum biomass dry weight was 0.48 ± 0.02 and 0.51 ± 0.03 g L-1 , respectively. This acidophilic microalga proved to be suitable for carbon biofixation and removal of nutrients from secondary effluent of wastewater treatment plants with high CO2 concentration. All assays were performed without pH control. This microalga species presented high lipid content. However, fatty acid methyl esters (FAME) are not suitable for biodiesel use.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app