Add like
Add dislike
Add to saved papers

Electrodegradation of naphthalenic amines: Influence of the relative position of the substituent groups, anode material and electrolyte on the degradation products and kinetics.

Chemosphere 2018 August
The electrodegradation of the 4-aminonaphthalene-1-sulfonic acid (4AN1S), 5-aminonaphthalene-2-sulfonic acid (5AN2S) and 8-aminonaphthalene-2-sulfonic acid (8AN2S) was studied, using two electrode materials as anode, BDD and Ti/Pt/PbO2 , and two different electrolytes, sodium sulfate and sodium chloride. The highest COD removal rates were obtained at BDD: for 5AN2S and 8AN2S results were similar in both electrolytes; for 4AN1S, results were better in sodium chloride. The lowest COD removal rates were obtained at the system Ti/Pt/PbO2 -sodium sulfate, for all the studied amines. The dissolved organic carbon (DOC) removal was much higher at BDD for all the amines, in sulfate for 5AN2S and 8AN2S and in chloride for 4AN1S. Nitrogen removal was always almost irrelevant in sulfate medium but higher than 60%, after 6-h assays, in chloride. The highest combustion efficiencies were attained at the system BDD-sodium sulfate and were: 4AN1S-75%; 5AN2S-84%; 8AN2S-74%. HPLC results show that total degradation of the studied aminonaphthalene sulfonates is attained at both anode materials, utilizing any of the electrolytes, with a first order kinetics. However, kinetic constants obtained with the variation of the amines concentration in time are 10-40 times higher in chloride, being slightly higher at Ti/Pt/PbO2 than at BDD. Regarding the presence of carboxylic acids during the degradation assays, it was observed that the electrolysis of the amines 5AN2S and 8AN2S always lead to higher amounts of oxalic acid and lower quantities of acetic acid than the electrolysis of the amine 4AN1S.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app