Add like
Add dislike
Add to saved papers

Metabolomic profiling and biological investigation of the marine sponge-derived bacterium Rhodococcus sp. UA13.

INTRODUCTION: Marine sponge-associated actinomycetes are potent sources of bioactive natural products of pharmaceutical significance. They also contributed to the discovery of several clinically relevant antimicrobials.

OBJECTIVE: To apply the non-targeted metabolomics approach in chemical profiling of the sponge-derived bacterium Rhodococcus sp. UA13, formerly recovered from the Red Sea sponge Callyspongia aff. Implexa, along with testing for the anti-infective potential of its different fractions.

METHODOLOGY: Metabolomic analysis of the crude extract was carried out using liquid chromatography with high resolution electrospray ionisation mass spectrometry (LC-HR-ESI-MS) for dereplication purposes. Besides, the three major fractions (ethyl acetate, methanol, and n-butanol) obtained by chromatographic fractionation of the crude extract were evaluated for their anti-infective properties.

RESULTS: A variety of metabolites, mostly peptides, were characterised herein for the first time from the genus Rhodococcus. Among the tested samples, the n-butanol fraction showed potent inhibitory activities against Staphylococcus aureus, Candida albicans, and Trypanosoma brucei brucei with IC50 values of 9.3, 6.7, and 8.7 μg/mL, respectively, whereas only the ethyl acetate fraction was active against Chlamydia trachomatis (IC50  = 18.9 μg/mL). In contrast, both fractions did not exert anti-infective actions against Enterococcus faecalis and Leishmania major, whereas the methanol fraction was totally inactive against all the tested organisms.

CONCLUSION: This study showed the helpfulness of the established procedure in metabolic profiling of marine actinomycetes using liquid chromatography mass spectrometry (LC-MS) data, which aids in reducing the complex isolation steps during their chemical characterisation. The anti-infective spectrum of their metabolites is also interestingly relevant to future drug development.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app