Add like
Add dislike
Add to saved papers

Integrating geochemical investigations and geospatial assessment to understand the evolutionary process of hydrochemistry and groundwater quality in arid areas.

Groundwater is the key for life in arid areas. Aquifer overexploitation and climatic conditions can significantly deteriorate groundwater quality. The Al-Qassim area in central Saudi Arabia is characterized by dense agricultural use and is irrigated mainly by fossil groundwater from the Saq Aquifer. Understanding the area's hydrochemistry, major factors governing groundwater quality, and alternative uses of the groundwater are the main goals of this study. Groundwater samples were collected and examined for major, minor, and trace elements. Ionic relationships, hydrochemical facies, geospatial distributions, and multivariate analyses were conducted to assess the hydrochemical processes at play. The salinity and nitrate concentrations of the Saq Aquifer's groundwater were found to increase in the outcrop areas more than the confined areas. The spatial distributions were fragmented by three main factors: (i) modern recharge by relatively brackish water, (ii) irrigation return flow in intensive farming areas, and (iii) overexploitation and draining of deep and relatively saline zones of the aquifer. Seven water types were found representing the alkaline water with a predominance of sulfate-chloride ions and earth alkaline water with a predominance of sulfate and chloride. Mixing between fresh and brackish water, dissolution of mineral phases, silicate weathering, and reverse ion exchange were recognized as the evolutionary processes, while evaporation played a minor role. Cluster analyses characterized the fresh groundwater zone, modern groundwater recharge zone, and anthropogenic influence zone. In the confined areas, nearly all the groundwater was appropriate for domestic use and irrigation. In the outcrop areas, some limitations were found due to unsuitable conditions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app