Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Synaptic properties of layer VI inverted pyramidal cells in the rodent somatosensory cortex.

The properties of specific cortical cell types enable greater understanding of how cortical microcircuits process and transmit sensory, motor, and cognitive information. Previous reports have characterized the intrinsic properties of the inverted pyramidal cell (IPC) where the most prominent dendrite is orientated towards the cortical white matter. Using whole cell patch clamp recordings from rat and mouse somatosensory cortex in conjunction with electric microstimulation of the white matter we characterized the synaptic inputs onto IPCs and the more common upright pyramidal cell (UPC) in the infragranular layers. Both classes of pyramidal cells received monosynaptic glutamatergic input following white matter stimulation, but varied on a number of parameters. Most prominently, UPCs displayed higher amplitude responses and showed greater rates of depression compared to IPCs. These data reinforce the view that IPCs are a separate functional class of cortical neuron.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app