Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Knockdown of MRPL42 suppresses glioma cell proliferation by inducing cell cycle arrest and apoptosis.

Bioscience Reports 2018 April 28
Mammalian mitochondrial ribosomal proteins are functionally involved in protein synthesis in mitochondrion. Recently numerous studies have illuminated the role of mitochondrion in cancer development. However, the precise function of mitochondrial ribosomal protein L42 (MRPL42) remains unclear. Here in the present study, we identified MRPL42 as a novel oncogene in glioma. By analyzing the Cancer Genome Atlas (TCGA) database, we first found that MRPL42 was significantly up-regulated in glioma tissues compared with normal tissues. Functionally, we silenced MRPL42 in glioma cells and revealed that MRPL42 knockdown largely blunted the proliferation of U251 and A172 cells. Mechanistically, our results suggested that MRPL42 silencing resulted in increased distribution of cell cycle in G1 and G2 /M phases, while the S-phase decreased. In addition, the apoptosis and caspase3/7 activity were both activated after MRPL42 knockdown. Taken together, MRPL42 is a novel oncogene in glioma and might help us develop promising targetted therapies for glioma patients.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app