Add like
Add dislike
Add to saved papers

Dihydrofisetin exerts its anti-inflammatory effects associated with suppressing ERK/p38 MAPK and Heme Oxygenase-1 activation in lipopolysaccharide-stimulated RAW 264.7 macrophages and carrageenan-induced mice paw edema.

Dihydrofisetin is a flavanonol derived from some edible wild herbs and traditional Chinese medicines. It has been found to possess many biological activities. However, the anti-inflammatory potential of Dihydrofisetin remains uncharacterized. The aim of the present study was to investigate the anti-inflammatory activity of Dihydrofisetin and its underlying mechanisms. We found that Dihydrofisetin dose-dependently inhibited lipopolysaccharide-induced productions of nitric oxide (NO) and prostaglandin E2 (PGE2 ) in RAW 264.7 macrophages, probably through suppressing the protein expressions of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2). The expressions of pro-inflammatory cytokines, such as tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), interleukin-6 (IL-6) and monocyte chemotactic protein (MCP-1) were also suppressed. We further demonstrated that Dihydrofisetin inhibited the activation of mitogen-activated protein kinases (MAPKs) pathway and phosphorylation of IκB-α whereas upregulated the expression of heme oxygenase-1 (HO-1). The in vivo carrageenan-induced mice paw edema study also indicated that treatment with 100 mg/kg of Dihydrofisetin could significantly inhibit carrageenan induced paw edema, decrease the levels of TNF-α, IL-6 and MDA, and increase the activity of GSH-Px in paw tissues. Taken together, Dihydrofisetin may act as a natural agent for treating inflammatory diseases by targeting MAPK, NF-κB and HO-1 pathways.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app