Add like
Add dislike
Add to saved papers

Impact of collagen-alginate composition from microbead morphological properties to microencapsulated canine adipose tissue-derived mesenchymal stem cell activities.

The purpose of this study was to identify the effect of collagen-alginate composition on the size and shape of microbeads and the proliferation and osteogenic properties of microencapsulated canine adipose-derived mesenchymal stem cells (ASCs) in vitro. Canine ASCs were microencapsulated in mixtures of various collagen-alginate compositions using a vibrational technologic encapsulator. The size and shape of the resultant microbeads were measured using a light field microscope and the viability of the microencapsulated canine ASCs was evaluated using a live/dead viability/cytotoxicity kit. Proliferation and osteogenic potentials of microencapsulated canine ASCs were evaluated using an alamarBlue proliferation assay and an alkaline phosphatase assay, respectively. As the collagen ratio increased, the size and size variation of microbeads increased and the shape of microbeads became more irregular. Nonetheless, homogeneous microbeads were created with no significant difference in size and shape, in the range of 0.75% alginate mixed with 0.099% collagen solution in 1.2% alginate solution. There were no significant differences in viability of the ASCs in the various collagen-alginate compositions. Both proliferation and osteogenic properties, in vitro, increased with increasing collagen ratio. Microencapsulation of canine ASCs with appropriate collagen-alginate composition increases cell proliferation and osteogenic properties, in vitro, without significant effects on the shape and size of microbeads and cell viability. Microencapsulation with adequate collagen-alginate composition may produce injectable microbeads that could enhance the therapeutic efficacy of stem cells.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app