Add like
Add dislike
Add to saved papers

Gold nanoflowers synthesized using Acanthopanacis cortex extract inhibit inflammatory mediators in LPS-induced RAW264.7 macrophages via NF-κB and AP-1 pathways.

We reported the rapid synthesis (<8s) of gold nanoparticles at room temperature using Acanthopanacis cortex extract (A-AuNPs). We characterized the A-AuNPs using several analytical techniques and found that nano-flower type A-AuNPs, which are known to possess a coarse surface with a high surface to volume ratio, conferring these particles with high binding capacity for various biological molecules. After confirming the stability of the nanoparticles, we investigated the anti-inflammatory effect of A-AuNPs in LPS-stimulated RAW264.7 cells. These nanoparticles inhibited LPS-induced iNOS and COX-2 protein as well as gene expression level, along with reduction of NO and PGE2 production. Furthermore, we observed that the A-AuNPs inhibited translocation of NF-κB and AP-1 through phosphorylation of MAPK signaling by western blot analysis. In summary, we synthesized gold nanoflowers in an economical and eco-friendly way using Acanthopanacis cortex extract and the resultant flower-like A-AuNPs had anti-inflammatory activity, highlighting their potential as therapeutic candidates for suppression of inflammatory-mediated diseases.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app