Add like
Add dislike
Add to saved papers

Polymer-lipid hybrid nanoparticles-based paclitaxel and etoposide combinations for the synergistic anticancer efficacy in osteosarcoma.

In this study, paclitaxel and etoposide-loaded lipid-polymer hybrid nanoparticles (PE-LPN) was successful prepared and evaluated for physicochemical and anticancer effect. Nanosized PE-LPN was obtained with a perfect spherical morphology. PE-LPN exhibited a controlled release of two drugs in a sequential manner. The nanoparticles exhibited a typical endocytosis-mediated cellular uptake in cancer cells. The ratiometric combination of paclitaxel (PTX) and etoposide (ETP) were significantly more cytotoxic than individual drugs. Importantly, superior cytotoxic effect was observed for dual-drug-loaded PE-LPN than cocktail combination at a much lower dose. Similarly, PE-LPN exhibited a significantly higher apoptosis of cancer cells (∼45%) compared to that of any other groups with higher caspase-3 and -8 activity. Importantly, PE-LPN showed a remarkable tumor regression effect and exhibited a 2-fold superior efficacy than free drugs. PE-LPN treated group showed significantly less Ki-67 positive cells (less than 25%) than PTX/ETP and single drug treated groups, suggesting less active cell proliferation and a considerably higher tumor growth inhibition effect. The results collectively showed that combination of drugs could greatly improve the therapeutic property of chemotherapeutic drugs. By combining ETP with PTX (a powerful anticancer drug) in a polymer-lipid hybrid nanoparticle system, therapeutic efficacy could be improved in osteosarcoma treatments.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app