Add like
Add dislike
Add to saved papers

Time-varying assessment of heart rate variability parameters using respiratory information.

Analysis of heart rate variability (HRV) is commonly used for characterization of autonomic nervous system. As high frequency (HF, known as the respiratory-related) component of HR, overlaps with the typical low frequency (LF) band when the respiratory rate is low, a reference signal for HF variations would help in better discriminating the LF and HF components of HR. The present study proposes a model for time-varying separation of HRV components as well as estimation of HRV parameters using respiration information. An autoregressive moving average with exogenous input (ARMAX) model of HRV is considered with a parametrically modeled respiration signal as the input. The model parameters are estimated using smoothed extended Kalman filtering. Results for different synthetic data show that our proposed joint model outperforms the classical AR modeling in estimation of HRV parameters especially in the case of low respiration rate. In addition, the possibility of using pulse transit time (PTT) and the amplitude of photoplethysmogram (PPGamp ) as surrogates of the input respiratory signal has been investigated. To this end, electrocardiogram (ECG), PPG and respiration have been recorded from 21 healthy subjects (10 males and 11 females, mean age 27.5 ± 4.1) during normal and deep respiration. Results show that indeed PTT and PPGamp offer good potential to be used as references for respiratory-related variations of HR, thus avoiding additional devices for recording respiration.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app