Add like
Add dislike
Add to saved papers

Hyaluronic acid-hydroxyapatite nanocomposite hydrogels for enhanced biophysical and biological performance in a dermal matrix.

A hyaluronic acid (HAc)-hydroxyapatite (HAp) nanocomposite (HAc-nanoHAp) hydrogel was fabricated through an in situ precipitation process for mechanical and biological enhancement as a soft tissue augmentation product. In this study, these composite hydrogel fillers were analyzed from three different perspectives and compared with pure HAc hydrogel for soft tissue augmentation application: (1) rheological behaviors, (2) in vivo lateral diffusion under mouse skin, and (3) wrinkle improvement in a photo-aged mouse model. HAc-nanoHAp provided great improvement to wrinkles because of its higher stiffness and gel cohesiveness in comparison with that of pure HAc. HAc-nanoHAp also presented great enhancement in strengthening the dermal matrix by stimulating the synthesis of collagen and elastin. Thus, HAc-nanoHAp filler has great potential as a soft tissue augmentation product, improving the biophysical and biological performance in skin tissue. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 3315-3325, 2017.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app