Add like
Add dislike
Add to saved papers

Nanocomposite particles with improved microstructure for 3D culture systems and bone regeneration.

Nano-apatite and gelatin-alginate hydrogel microparticles have been prepared by a one-step synthesis combined with electrostatic bead generation, for the reconstruction of bone defects. Based on the analysis of bone composition, architecture and embryonic intramembranous ossification, a bio-inspired fabrication has been developed. Accordingly, the mineral phase has been in situ synthesized, calcifying the hydrogel matrix while the latter was crosslinked, finally generating microparticles that can assemble into a bone defect to ensure interconnected pores. Although nano-apatite-biopolymer composites have been widely investigated, microstructural optimization to provide improved distribution and stability of the mineral is rarely achieved. The optimization of the developed method progressively resulted in two types of formulations (15P and 7.5P), with 15 and 7.5 (wt%) phosphate content in the initial precursor. The osteolytic potential was investigated using differentiated macrophages. A commercially available calcium phosphate bone graft substitute (Eurocer 400) was incorporated into the hydrogel, and the obtained composites were in vitro tested for comparison. The cytocompatibility of the microparticles was studied with mouse osteoblast-like cell line MC3T3-E1. Results indicated the best in vitro performance have been obtained for the sample loaded with 7.5P. Preliminary evaluation of biocompatibility into a critical size (3 mm) defect in rabbits showed that 7.5P nanocomposite is associated with newly formed bone in the proximity of the microparticles, after 28 days.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app