Read by QxMD icon Read

Journal of Materials Science. Materials in Medicine

Maria Giretova, Lubomir Medvecky, Radoslava Stulajterova, Tibor Sopcak, Jaroslav Briancin, Monika Tatarkova
Polyhydroxybutyrate/chitosan/calcium phosphate composites are interesting biomaterials for utilization in regenerative medicine and they may by applied in reconstruction of deeper subchondral defects. Insufficient informations were found in recent papers about the influence of lysozyme degradation of chitosan in calcium phosphate/chitosan based composites on in vitro cytotoxicity and proliferation activity of osteoblasts. The effect of enzymatic chitosan degradation on osteoblasts proliferation was studied on composite films in which the porosity of origin 3D scaffolds was eliminated and the surface texture was modified...
December 2016: Journal of Materials Science. Materials in Medicine
Priscilla Hakime Scalize, Karina F Bombonato-Prado, Luiz Gustavo de Sousa, Adalberto Luiz Rosa, Marcio Mateus Beloti, Marisa Semprini, Rossano Gimenes, Adriana L G de Almeida, Fabíola Singaretti de Oliveira, Simone Cecilio Hallak Regalo, Selma Siessere
Osteoporosis is a chronic disease that impairs proper bone remodeling. Guided bone regeneration is a surgical technique that improves bone defect in a particular region through new bone formation, using barrier materials (e.g. membranes) to protect the space adjacent to the bone defect. The polytetrafluorethylene membrane is widely used in guided bone regeneration, however, new membranes are being investigated. The purpose of this study was to evaluate the effect of P(VDFTrFE)/BT [poly(vinylidene fluoride-trifluoroethylene)/barium titanate] membrane on in vivo bone formation...
December 2016: Journal of Materials Science. Materials in Medicine
Kwang-Jun Oh, Young-Bong Ko, Sagar Jaiswal, In-Cheul Whang
The purpose of this study was to compare the osteoconductivity, and absorbability of hydroxyapatite or beta-tricalcium phosphate in clinical scenario of opening wedge high tibial osteotomy Total 41 knees of 40 patients with follow up period of more than 1 year were enrolled. These patients were divided into two groups, Group I (22 knees, 21 patients) used hydroxyapatite and Group II (19 knees, 19 patients) used beta-tricalcium phosphate as a substitute in the opening gap. According to proven method, the osteoconductivity was assessed radiographically by the extent of new bone formation at osteotomy space and absorbability was evaluated by measuring the area occupied by substitute at immediate postoperative, postoperative 6 months and 1 year...
December 2016: Journal of Materials Science. Materials in Medicine
Anees A Ansari, Abdul K Parchur, Brijesh Kumar, S B Rai
The design of nanostructured materials with highly stable water-dispersion and luminescence efficiency is an important concern in nanotechnology and nanomedicine. In this paper, we described the synthesis and distinct surface modification on the morphological structure and optical (optical absorption, band gap energy, excitation, emission, decay time, etc.) properties of highly crystalline water-dispersible CaF2:Ce/Tb nanocrystals (core-nanocrystals). The epitaxial growth of inert CaF2 and silica shell, respectively, on their surface forming as CaF2:Ce/Tb@CaF2 (core/shell) and CaF2:Ce/Tb@CaF2@SiO2 (core/shell/SiO2) nanoarchitecture...
December 2016: Journal of Materials Science. Materials in Medicine
Alondra Escudero-Castellanos, Blanca E Ocampo-García, Ma Victoria Domínguez-García, Jaime Flores-Estrada, Miriam V Flores-Merino
Hydrogels are suitable materials to promote cell proliferation and tissue support because of their hydrophilic nature, porous structure and sticky properties. However, hydrogel synthesis involves the addition of additives that can increase the risk of inducing cytotoxicity. Sterilization is a critical process for hydrogel clinical use as a proper scaffold for tissue engineering. In this study, poly(ethylene glycol) (PEG), poly(ethylene glycol)-chitosan (PEG-CH) and multi-arm PEG hydrogels were synthesized by free radical polymerization and sterilized by gamma irradiation or disinfected using 70 % ethanol...
December 2016: Journal of Materials Science. Materials in Medicine
Mareike Klinger-Strobel, Oliwia Makarewicz, Mathias W Pletz, Andreas Stallmach, Christian Lautenschläger
Biofilm formation, also known as microfouling, on indwelling medical devices such as catheters or prosthetic joints causes difficult to treat and recurrent infections. It is also the initial step for biocorrosion of surfaces in aquatic environment. An efficient prevention of microfouling is preferable but the development of antibiofilm surfaces is enormously challenging. Therefore, soda-lime, aluminosilicate, and three borosilicate glasses with different TiO2 and ZnO compositions were investigated on their feasibility to prevent biofilm formation by standardized in vitro biofilm assays using different pathogenic bacteria...
December 2016: Journal of Materials Science. Materials in Medicine
Lihui Weng, Hsiang-Jer Tseng, Parinaz Rostamzadeh, Jafar Golzarian
Drug loadable bioresorbable microspheres (BRMS) are specially designed for the treatment of hypervascular tumors through arterial embolization. These microspheres consist of carboxymethyl chitosan crosslinked with carboxymethyl cellulose, and are available at different size ranges varying from 50 to 900 µm in diameter. Similar to commercially available non-resorbable drug eluting microspheres, LC Bead(®) microspheres (LCB), BRMS were capable of loading more than 99 % of doxorubicin, an anticancer drug, from the solution within 2 h with highly similar kinetics (difference factor f 1 = 0...
December 2016: Journal of Materials Science. Materials in Medicine
Valmiki B Koli, Sagar D Delekar, Shivaji H Pawar
In this study, nanocomposites of Fe-doped TiO2 with multi-walled carbon nanotubes (0.1- 0.5 wt. %) were prepared by using sol-gel method. The structural and morphological analysis were carried out with using X-ray diffraction pattern and transmission electron microscopy, which confirm the presence of pure anatase phase and particle sizes in the range 15-20 nm. X-ray photoelectron spectroscopy was used to determine the surface compositions of the nanocomposites. UV-vis diffuse reflectance spectra confirm redshift in the optical absorption edge of nanocomposites with increasing amount of multi-walled carbon nanotubes...
December 2016: Journal of Materials Science. Materials in Medicine
Yunfeng Shi, Zhipeng Xiong, Xuefei Lu, Xin Yan, Xiang Cai, Wei Xue
We describe an electrostatic droplet generation method to prepare a novel carboxymethyl chitosan-graphene oxide hybrid particles for delivery purpose. Under an adjustable electrostatic field, graphene oxide and carboxymethyl chitosan mixed solution was sprayed as uniform micro-droplets, which were solidified as particles in CaCl2 solution. Such hybrid particles are wished to have excellent stability in saline solution, and better delivery properties than pristine carboxymethyl chitosan particles. The effects of micro-droplets generation conditions on particles formation were systematically investigated...
November 2016: Journal of Materials Science. Materials in Medicine
Xiaoxin Ye, Guoyi Tang
No abstract text is available yet for this article.
November 2016: Journal of Materials Science. Materials in Medicine
Song Chen, Satwik Gururaj, Wei Xia, Håkan Engqvist
Developing dental restorations with enhanced antibacterial properties has been a constant quest for materials scientists. The aim of this study was to synthesize silver doped calcium phosphate particles and use them to improve antibacterial properties of conventional glass ionomer cement. The Ag doped monetite (Ag-DCPA) and hydroxyapatite (Ag-HA) were synthesized by precipitation method and characterized using X-ray diffraction, scanning electron microscope and X-ray fluorescence spectroscopy. The antibacterial properties of the cements aged for 1 day and 7 days were evaluated by direct contact measurement using staphylococcus epidermis Xen 43...
November 2016: Journal of Materials Science. Materials in Medicine
Jintamai Suwanprateeb, Faungchat Thammarakcharoen, Nattapat Hobang
A new infiltration technique using a combination of low and high molecular weight polycaprolactone (PCL) in sequence was developed as a mean to improve the mechanical properties of three dimensional printed hydroxyapatite (HA). It was observed that using either high (M n~80,000) or low (M n~10,000) molecular weight infiltration could only increase the flexural modulus compared to non-infiltrated HA, but did not affect strength, strain at break and energy at break. In contrast, a combination of low and high molecular infiltration in sequence increased the flexural modulus, strength and energy at break compared to those of non-infiltrated HA or infiltrated by high or low molecular weight PCL alone...
November 2016: Journal of Materials Science. Materials in Medicine
Mario Kurtjak, Marija Vukomanović, Lovro Kramer, Danilo Suvorov
Intensive research in the area of medical nanotechnology, especially to cope with the bacterial resistance against conventional antibiotics, has shown strong antimicrobial action of metallic and metal-oxide nanomaterials towards a wide variety of bacteria. However, the important remaining problem is that nanomaterials with highest antibacterial activity generally express also a high level of cytotoxicity for mammalian cells. Here we present gallium nanoparticles as a new solution to this problem. We developed a nanocomposite from bioactive hydroxyapatite nanorods (84 wt %) and antibacterial nanospheres of elemental gallium (16 wt %) with mode diameter of 22 ± 11 nm...
November 2016: Journal of Materials Science. Materials in Medicine
Lin Wang, Xianju Xie, Michael D Weir, Ashraf F Fouad, Liang Zhao, Hockin H K Xu
The objectives of this study were to: (1) develop a new bioactive dental bonding agent with nanoparticles of amorphous calcium phosphate and dimethylaminohexadecyl methacrylate for tooth root caries restorations and endodontic applications, and (2) investigate biofilm inhibition by the bioactive bonding agent against eight species of periodontal and endodontic pathogens for the first time. Bonding agent was formulated with 5 % of dimethylaminohexadecyl methacrylate. Nanoparticles of amorphous calcium phosphate at 30 wt% was mixed into adhesive...
November 2016: Journal of Materials Science. Materials in Medicine
Furqan A Shah, Patrik Stenlund, Anna Martinelli, Peter Thomsen, Anders Palmquist
The osteocyte network, through the numerous dendritic processes of osteocytes, is responsible for sensing mechanical loading and orchestrates adaptive bone remodelling by communicating with both the osteoclasts and the osteoblasts. The osteocyte network in the vicinity of implant surfaces provides insight into the bone healing process around metallic implants. Here, we investigate whether osteocytes are able to make an intimate contact with topologically modified, but micrometre smooth (S a < 0.5 µm) implant surfaces, and if sub-micron topography alters the composition of the interfacial tissue...
November 2016: Journal of Materials Science. Materials in Medicine
Xiang Lu, Kai Li, Youtao Xie, Liping Huang, Xuebin Zheng
In recent years, CaSiO3 bio-ceramic coatings have attracted great attention because of their good bioactivity. However, their high degradation rates in physiological environment restrict their practical applications. In this work, boron-modified CaSiO3 ceramic (Ca11Si4B2O22, B-CS) coating was developed on Ti substrates by plasma-spraying technique attempting to obtain enhanced chemical stability and osteogenic activity. The B-CS coating possessed significantly increased chemical stability due to the introduction of boron and consequently the modified crystal structure, while maintaining good bioactivity...
November 2016: Journal of Materials Science. Materials in Medicine
Ekaterina I Shishatskaya, Elena D Nikolaeva, Olga N Vinogradova, Tatiana G Volova
The present study reports construction of wound dressing materials from degradable natural polymers such as hydroxy derivatives of carboxylic acids (PHAs) and 3-hydroxybutyrate/4-hydroxybutyrate [P(3HB/4HB)] as copolymer. The developed polymer films and electrospun membranes were evaluated for its wound healing properties with Grafts-elastic nonwoven membranes carrying fibroblast cells derived from adipose tissue multipotent mesenchymal stem cells. The efficacy of nonwoven membranes of P(3HB/4HB) carrying the culture of allogenic fibroblasts was assessed against model skin defects in Wistar rats...
November 2016: Journal of Materials Science. Materials in Medicine
Fahimeh Sadat Tabatabaei, Saeed Tatari, Ramin Samadi, Maryam Torshabi
Bone autografts are often used for reconstruction of bone defects; however, due to the limitations of autografts, researchers have been in search of bone substitutes. Dentin is of particular interest for this purpose due to high similarity to bone. This in vitro study sought to assess the surface characteristics and biological properties of dentin samples prepared with different treatments. This study was conducted on regular (RD), demineralized (DemD), and deproteinized (DepD) dentin samples. X-ray diffraction and Fourier transform infrared spectroscopy were used for surface characterization...
November 2016: Journal of Materials Science. Materials in Medicine
Yan Li, Jianxin Deng, Jun Zhou, Xueen Li
Corresponding to pre-puncture and post-puncture insertion, elastic and viscoelastic mechanical properties of brain tissues on the implanting trajectory of sub-thalamic nucleus stimulation are investigated, respectively. Elastic mechanical properties in pre-puncture are investigated through pre-puncture needle insertion experiments using whole porcine brains. A linear polynomial and a second order polynomial are fitted to the average insertion force in pre-puncture. The Young's modulus in pre-puncture is calculated from the slope of the two fittings...
November 2016: Journal of Materials Science. Materials in Medicine
Sung Joon Shin, Jae Hyup Lee, Jungwon So, Kyungdan Min
Poloxamer-based thermo-sensitive sol-gel has been developed to reduce the incidence of postoperative scar formation at the laminectomy site. The purpose of this study was to evaluate the anti-adhesive effect of poloxamer based thermo-sensitive sol-gel compared to hyaluronate based solution after laminectomy, using a rabbit model. A thermo-sensitive anti-adhesive with a property of sol-gel transition was manufactured by a physical mixture of Poloxamer188/407, Chitosan and Gelatin. The viscosity in different temperatures was assessed...
November 2016: Journal of Materials Science. Materials in Medicine
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"