Add like
Add dislike
Add to saved papers

Deep brain stimulation alters light phase food intake microstructure in rats.

Treatment of eating disorders like obesity or anorexia is challenging. Options are limited and new approaches desired. An interesting approach is the application of deep brain stimulation (DBS). The nucleus accumbens (NAcc) is part of the food reward system. A pilot study reported that DBS of the NAcc shell modulates food intake and body weight in rats. Underlying mechanisms such as the food intake microstructure are unknown so far. Normal weight female Sprague-Dawley rats were equipped with a custom-made DBS electrode placed unilaterally in the NAcc shell. Biphasic stimulation was performed for seven days. Body weight and food intake including the microstructure were assessed over the experimental period. Behavior was monitored manually. DBS tended to increase body weight gain (28.1 ± 5.4 g) compared to sham-stimulated controls (16.7 ± 3.4, P = 0.05) without affecting daily food intake (P > 0.05). Further analyses showed that light phase food intake was stimulated, whereas dark phase food intake was decreased in the DBS group (P < 0.05). During the light phase bout frequency (+50%), bout duration (+64%), meal duration (+71%) and overall time spent in meals (+92%) were increased in DBS rats (P < 0.05), while during the dark phase no alterations were observed (P > 0.05). Behavior did not show differences regarding overall eating and drinking behavior (including food/water approach), grooming or locomotion (P > 0.05). Summarized, although overall food intake was not changed by DBS, light phase food intake was stimulated likely via a reduction of satiation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app