Add like
Add dislike
Add to saved papers

A simple and efficient algorithm operating with linear time for MCEEG data compression.

Popularisation of electroencephalograph (EEG) signals in diversified fields have increased the need for devices capable of operating at lower power and storage requirements. This has led to a great deal of research in data compression, that can address (a) low latency in the coding of the signal, (b) reduced hardware and software dependencies, (c) quantify the system anomalies, and (d) effectively reconstruct the compressed signal. This paper proposes a computationally simple and novel coding scheme named spatial pseudo codec (SPC), to achieve lossy to near lossless compression of multichannel EEG (MCEEG). In the proposed system, MCEEG signals are initially normalized, followed by two parallel processes: one operating on integer part and the other, on fractional part of the normalized data. The redundancies in integer part are exploited using spatial domain encoder, and the fractional part is coded as pseudo integers. The proposed method has been tested on a wide range of databases having variable sampling rates and resolutions. Results indicate that the algorithm has a good recovery performance with an average percentage root mean square deviation (PRD) of 2.72 for an average compression ratio (CR) of 3.16. Furthermore, the algorithm has a complexity of only O(n) with an average encoding and decoding time per sample of 0.3 ms and 0.04 ms respectively. The performance of the algorithm is comparable with recent methods like fast discrete cosine transform (fDCT) and tensor decomposition methods. The results validated the feasibility of the proposed compression scheme for practical MCEEG recording, archiving and brain computer interfacing systems.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app