Add like
Add dislike
Add to saved papers

Melatonin impedes Tet1-dependent mGluR5 promoter demethylation to relieve pain.

Melatonin (N-acetyl-5-methoxytryptamine)/MT2 receptor-dependent epigenetic modification represents a novel pathway in the treatment of neuropathic pain. Because spinal ten-eleven translocation methylcytosine dioxygenase 1 (Tet1)-dependent epigenetic demethylation has recently been linked to pain hypersensitivity, we hypothesized that melatonin/MT2-dependent analgesia involves spinal Tet1-dependent demethylation. Here, we showed that spinal Tet1 gene transfer by intrathecal delivery of Tet1-encoding vectors to naïve rats produced profound and long-lasting nociceptive hypersensitivity. In addition, enhanced Tet1 expression, Tet1-metabotropic glutamate receptor subtype 5 (mGluR5) promoter coupling, demethylation at the mGluR5 promoter, and mGluR5 expression in dorsal horn neurons were observed. Rats subjected to spinal nerve ligation and intraplantar complete Freund's adjuvant injection displayed tactile allodynia and behavioral hyperalgesia associated with similar changes in the dorsal horn. Notably, intrathecal melatonin injection reversed the protein expression, protein-promoter coupling, promoter demethylation, and pain hypersensitivity induced by Tet1 gene transfer, spinal nerve ligation, and intraplantar complete Freund's adjuvant injection. All the effects caused by melatonin were blocked by pretreatment with a MT2 receptor-selective antagonist. In conclusion, melatonin relieves pain by impeding Tet1-dependent demethylation of mGluR5 in dorsal horn neurons through the MT2 receptor. Our findings link melatonin/MT2 signaling to Tet1-dependent epigenetic demethylation of nociceptive genes for the first time and suggest melatonin as a promising therapy for the treatment of pain.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app