Add like
Add dislike
Add to saved papers

Effects of SDF-1/CXCR4 on the Repair of Traumatic Brain Injury in Rats by Mediating Bone Marrow Derived Mesenchymal Stem Cells.

Our study aims to investigate the effects of the SDF-1/CXCR4 axis on the repair of traumatic brain injury (TBI) in rats by mediating bone marrow derived from mesenchymal stem cells (BMSCs). Healthy male SD rats were collected, their tibiofibulars were removed, cultured, and BMSCs were collected. The expression of cell-surface molecular proteins was examined using flow cytometry. The mRNA and protein expression of CXCR4 in cells were tested using qRT-PCR and western blotting analysis. An electronic brain injury instrument was utilized to build TBI rat models and each rat was assigned into the experiment, positive control and control groups (10 rats in each group). The morris water maze was used to calculate the escape latency and number of times rats in each group crossed the platform. Neurological severity scores (NSS) was calculated to evaluate the recovery of neurological functioning. The distribution of neuronal nuclear antigens was detected using double-labeling immunohistochemistry. The morphological changes in the hippocampal neuronal and the number of BrdU-positive cells were observed through Nissl's staining and high magnification. The mRNA and protein expressions of CXCR4 were gradually increased as SDF-1 concentration increased. NGF and BDNF positive cells were expressed in each group. The distribution of neuronal nuclear antigens in the experiment group was elevated compared to the control and positive control groups. Among the three groups, the experimental group had the shortest escape latency and the highest number platform crossings. The difference in NSS among the three groups was significant. The experimental group had better cell morphology and a higher number of BrdU-positive cells than the other groups. The present study demonstrates that transplanting BMSCs with SDF-1-induced CXCR4 expression can promote the repair of TBI. This is expected to become a new treatment regimen for TBI.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app