Journal Article
Research Support, Non-U.S. Gov't
Review
Add like
Add dislike
Add to saved papers

Unpacking 'Artemisinin Resistance'.

Artemisinin and its derivatives, in combination with partner drugs, are currently the most effective treatments for malaria parasite infection. Even though artemisinin has been widely used for decades, its mechanism of action had remained controversial until recently. Artemisinin combination therapies (ACTs) have recently been found to be losing efficacy in Southeast Asia. This 'artemisinin resistance', defined by a delayed parasite clearance time, has been associated with several genetic mutations. As with any other drug resistance phenotype, resistance can best be understood based on its mechanism of action. Recently, it was demonstrated that artemisinin attacks multiple parasitic targets, suggesting that mutations in drug targets are unlikely to cause high-level artemisinin resistance. These findings will help us to better understand the mechanisms of artemisinin resistance and suggest protocol modifications that may improve the efficacy of ACTs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app