Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Crystal structure of an IclR homologue from Microbacterium sp. strain HM58-2.

The bacterial transcription factor IclR (isocitrate lyase regulator) is a member of a one-component signal transduction system, which shares the common motif of a helix-turn-helix (HTH)-type DNA-binding domain (DBD) connected to a substrate-binding domain (SBD). Here, the crystal structure of an IclR homologue (Mi-IclR) from Microbacterium sp. strain HM58-2, which catabolizes acylhydrazide as the sole carbon source, is reported. Mi-IclR is expected to regulate an operon responsible for acylhydrazide degradation as an initial step. Native single-wavelength anomalous diffraction (SAD) experiments were performed in combination with molecular replacement. CRANK2 from the CCP4 suite successfully phased and modelled the complete structure of a homotetramer composed of 1000 residues in an asymmetric unit, and the model was refined to 2.1 Å resolution. The overall structure of Mi-IclR shared the same domain combination as other known IclR structures, but the relative geometry between the DBD and SBD differs. Accordingly, the geometry of the Mi-IclR tetramer was unique: the putative substrate-binding site in each subunit is accessible from the outside of the tetramer, as opposed to buried inside as in the previously known IclR structures. These differences in the domain geometry may contribute to the transcriptional regulation of IclRs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app