Add like
Add dislike
Add to saved papers

Proteomic analysis provides insights into changes in the central metabolism of the cambium during dormancy release in poplar.

Seasonal cycling of growth and dormancy is an important feature for the woody plants growing in temperate zone, and dormancy is an effective strategy for surviving the winter stress. But the mechanisms of dormancy maintenance and its release are still not clear, especially little information is available with regard to the changes of proteome during the process. A better understanding in the function of proteins and their related metabolic pathways would expand our knowledge of the mechanisms of dormancy maintenance and its release in trees. In this study, we employed the isobaric tags for relative and absolute quantification (iTRAQ) approach with LC-MS/MS analysis to investigate the protein profile changes during dormancy release in poplar. In addition, the change of lipid, total insoluble carbohydrates and starch granules in the cambium was investigated by histochemical methods. A total of 3789 proteins were identified in poplar cambial tissues, 1996 of them were significantly altered during the dormancy release. Most of the altered proteins involved in signaling, phytohormone, energy metabolism, stress and secondary metabolism by functional analysis. Our data shows that the lipid metabolism proteins changed significantly both in the release stage of eco- and endodormancy, while the changes of carbohydrate metabolism proteins were mainly in endo-dormancy release stage. Moreover, histochemical results were consistent with the proteomic data. Our results reveal diverse stage-specific metabolism changes during the dormancy-release process induced by chilling in poplar, which provided new information regarding the regulation mechanisms of dormancy maintenance and its release in trees.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app