Read by QxMD icon Read

Journal of Plant Physiology

José Hélio Costa, Clesivan Pereira Dos Santos, Beatriz de Sousa E Lima, Anthônio Nunes Moreira Netto, Kátia Daniella da Cruz Saraiva, Birgit Arnholdt-Schmitt
We identified AOX2 genes in monocot species from Lemnoideae (Spirodela polyrhiza, Lemna gibba and Landoltia punctata), Pothoideae (Anthurium andraeanum and Anthurium amnicola) and Monsteroideae (Epipremnum aureum) subfamilies within the Araceae, an early-diverging monocot family. These findings highlight the presence of AOX2 in the most ancient monocot ancestor and also that at least partial loss of this gene occurred during speciation events within several monocot orders. The presence of AOX2 in monocot species challenges (1) new understanding of the evolutionary history of the AOX gene family in angiosperms and (2) drives experimental and bioinformatics efforts to explore functional relevance of the two AOX gene family members for plant growth and development...
December 27, 2016: Journal of Plant Physiology
E Alos, A Martinez-Fuentes, C Reig, C Mesejo, M J Rodrigo, M Agustí, L Zacarías
In order to gain insights into the controversial ripening behavior of loquat fruits, in the present study we have analyzed the expression of three genes related to ethylene biosynthesis (ACS1, ACO1 and ACO2), two ethylene receptors (ERS1a and ERS1b), one signal transduction component (CTR1) and one transcription factor (EIL1) in peel and pulp of loquat fruit during natural ripening and also in fruits treated with ethylene (10μLL(-1)) and 1-MCP (10μLL(-1)), an ethylene action inhibitor. In fruits attached to or detached from the tree, a slight increase in ethylene production was detected at the yellow stage, but the respiration rate declined progressively during ripening...
December 19, 2016: Journal of Plant Physiology
Hasna Ellouzi, Souhir Sghayar, Chedly Abdelly
The effect of H2O2 and mannitol seed priming was investigated on plant growth, oxidative stress biomarkers and activities of antioxidant enzymes in leaves of Cakile maritima and Eutrema salsugineum, when exposed to drought and salt stress, either separately applied or combined. Under unprimed conditions, drought severely restricted growth (40% as compared to the control) and redox balance of C. maritima seedlings, whereas E. salsugineum showed these drastic effects under individual salinity (33% as compared to the control)...
December 15, 2016: Journal of Plant Physiology
Ewa Janik, Joanna Bednarska, Monika Zubik, Rafal Luchowski, Radoslaw Mazur, Karol Sowinski, Wojciech Grudzinski, Maciej Garstka, Wieslaw I Gruszecki
The efficient and fluent operation of photosynthesis in plants relies on activity of pigment-protein complexes called antenna, absorbing light and transferring excitations toward the reaction centers. Here we show, based on the results of the fluorescence lifetime imaging analyses of single chloroplasts, that pigment-protein complexes, in dark-adapted plants, are not able to act effectively as photosynthetic antennas, due to pronounced, adverse excitation quenching. It appeared that the antenna function could be activated by a short (on a minute timescale) illumination with light of relatively low intensity, substantially below the photosynthesis saturation threshold...
December 15, 2016: Journal of Plant Physiology
Shuyang Zhen, Marc W van Iersel
The efficiency of monochromatic light to drive photosynthesis drops rapidly at wavelengths longer than 685nm. The photosynthetic efficiency of these longer wavelengths can be improved by adding shorter wavelength light, a phenomenon known as the Emerson enhancement effect. The reverse effect, the enhancement of photosynthesis under shorter wavelength light by longer wavelengths, however, has not been well studied and is often thought to be insignificant. We quantified the effect of adding far-red light (peak at 735nm) to red/blue or warm-white light on the photosynthetic efficiency of lettuce (Lactuca sativa)...
December 15, 2016: Journal of Plant Physiology
Hana Uhlíková, Martin Solanský, Vendula Hrdinová, Ondrej Šedo, Tomáš Kašparovský, Jan Hejátko, Jan Lochman
Plant plasma membrane associated proteins play significant roles in Microbe-Associated Molecular Pattern (MAMP) mediated defence responses including signal transduction, membrane transport or energetic metabolism. To elucidate the dynamics of proteins associated with plasma membrane in response to cryptogein, a well-known MAMP of defence reaction secreted by the oomycete Phytophthora cryptogea, 2D-Blue Native/SDS gel electrophoresis of plasma membrane fractions was employed. This approach revealed 21 up- or down-regulated protein spots of which 15 were successfully identified as proteins related to transport through plasma membrane, vesicle trafficking, and metabolic enzymes including cytosolic NADP-malic enzyme and glutamine synthetase...
December 14, 2016: Journal of Plant Physiology
Masakazu Hara, Takuya Endo, Keita Kamiya, Ayuko Kameyama
Dehydrins, which are group 2 late embryogenesis abundant (LEA) proteins, accumulate in plants during the development of the embryo and exposure to abiotic stresses including low temperature. Dehydrins exhibit cryoprotection of freezing-sensitive enzymes, e.g. lactate dehydrogenase (LDH). Although it has been reported that K-segments conserved in dehydrins are related to their cryoprotection activity, it has not been determined which sequence features of the K-segments contribute to the cryoprotection. A cryoprotection assay using LDH indicated that 13 K-segments including 12 K-segments found in Arabidopsis dehydrins and a typical K-segment (TypK, EKKGIMEKIKEKLPG) derived from the K-segments of many plants showed similar cryoprotective activities...
December 14, 2016: Journal of Plant Physiology
Miguel Garriga, Natalia Raddatz, Anne-Aliénor Véry, Hervé Sentenac, María E Rubio-Meléndez, Wendy González, Ingo Dreyer
Commercial strawberry, Fragaria x ananassa Duch., is a species sensitive to salinity. Under saline conditions, Na(+) uptake by the plant is increased, while K(+) uptake is significantly reduced. Maintaining an adequate K(+)/Na(+) cytosolic ratio determines the ability of the plant to survive in saline environments. The goal of the present work was to clone and functionally characterize the genes AKT1 and HKT1 involved in K(+) and Na(+) transport in strawberry and to determine the relationship of these genes with the responses of three Fragaria spp...
December 14, 2016: Journal of Plant Physiology
Wei Huang, Ying-Jie Yang, Shi-Bao Zhang
Cyclic electron flow (CEF) around photosystem I (PSI) is essential for photosynthesis in mature leaves. However, the physiological roles of CEF in immature leaves are little known. Here, we measured the PSI and PSII activities, light response changes in PSI and PSII energy quenching for immature and mature leaves of Erythrophleum guineense grown under full sunlight. Comparing with the maximum quantum yield of PSII (Fv/Fm), the immature leaves had much lower values of the maximum photo-oxidizable P700 (Pm) than the mature leaves, suggesting the unsynchronized development of PSI and PSII activities...
December 10, 2016: Journal of Plant Physiology
Sławomir Borek, Ewelina Paluch-Lubawa, Stanisława Pukacka, Małgorzata Pietrowska-Borek, Lech Ratajczak
The research was conducted on embryo axes of yellow lupin (Lupinus luteus L.), white lupin (Lupinus albus L.) and Andean lupin (Lupinus mutabilis Sweet), which were isolated from imbibed seeds and cultured for 96h in vitro under different conditions of carbon and nitrogen nutrition. Isolated embryo axes were fed with 60mM sucrose or were sugar-starved. The effect of 35mM asparagine (a central amino acid in the metabolism of germinating lupin seeds) and 35mM nitrate (used as an inorganic kind of nitrogen) on growth, storage lipid breakdown and autophagy was investigated...
December 10, 2016: Journal of Plant Physiology
Selma Mlinarić, Jasenka Antunović Dunić, Martina Skendrović Babojelić, Vera Cesar, Hrvoje Lepeduš
Molecular processes involved in photosystem II adaptation of woody species to diurnal changes in light and temperature conditions are still not well understood. Regarding this, here we investigated differences between young and mature leaves of common fig (Ficus carica L.) in photosynthetic performance as well as accumulation of the main photosynthetic proteins: light harvesting complex II, D1 protein and Rubisco large subunit. Investigated leaf types revealed different adjustment mechanisms to keep effective photosynthesis...
December 9, 2016: Journal of Plant Physiology
Emna Gharbi, Juan-Pablo Martínez, Hela Benahmed, Gilles Lepoint, Brigitte Vanpee, Muriel Quinet, Stanley Lutts
Exposure to salinity induces a burst in ethylene synthesis in the wild tomato halophyte plant species Solanum chilense. In order to gain information on the role of ethylene in salt adaptation, plants of Solanum chilense (accession LA4107) and of cultivated glycophyte Solanum lycopersicum (cv. Ailsa Craig) were cultivated for 7days in nutrient solution containing 0 or 125mM NaCl in the presence or absence of the inhibitor of ethylene synthesis (aminovinylglycine (AVG) 2μM). Salt-induced ethylene synthesis in S...
December 7, 2016: Journal of Plant Physiology
Y Q Wang, X F Zhang, N Li, X Liu
Bacterial spot of tomato (Solanum lycopersicum L.) caused by several Xanthomonas species is one of the most destructive diseases. Genes regulating the hypersensitive resistance and field resistance to X. perforans race T3 have been intensively investigated over the last decade. However, a comparative analysis of cellular responses to the pathogen in susceptible and resistant hosts has not been completed, which prevents the detailed understanding of the interactions between the pathogen and tomato plants. In this study, the characteristics of lesions, stomata, and pathogen colonization in hypersensitive response (HR) PI 128216, field-resistant PI 114490, and susceptible OH 88119 tomato plants after inoculation with green fluorescent protein-labeled X...
December 7, 2016: Journal of Plant Physiology
Nan Wang, Yadi Xing, Qijin Lou, Ping Feng, Song Liu, Meidan Zhu, Wuzhong Yin, Shunran Fang, Yan Lin, Tianquan Zhang, Xianchun Sang, Guanghua He
Plant hormones coordinate a plant's responses to environmental stimuli and the endogenous developmental programs for cell division and elongation. Brassinosteroids are among the most important of these hormones in plant development. Recently, the ubiquitin-26S-proteasome system was identified to play a key role in hormone biology. In this study, we analyzed the function of a rice (Oryza sativa) gene, DSG1, which encodes a U-box E3 ubiquitin ligase. In the dsg1 mutant (an allelic mutant of tud1), the lengths of the roots, internodes, panicles, and seeds were shorter than that in the wild-type, which was due to defects in cell division and elongation...
December 7, 2016: Journal of Plant Physiology
Ladislav Tamás, Veronika Zelinová
Enhanced superoxide generation and significant inhibition of succinate dehydrogenase (SDH) activity followed by a strong reduction of root growth were detected in barley seedlings exposed to a 5μM Hg concentration for 30min, which increased further in an Hg dose-dependent manner. While at a 25μM Hg concentration no cell death was detectable, a 50μM Hg treatment triggered cell death in the root meristematic zone, which was markedly intensified after the treatment of roots with 100μM Hg and was detectable in the whole root tips...
December 5, 2016: Journal of Plant Physiology
Tanja Zadražnik, Wolfgang Egge-Jacobsen, Vladimir Meglič, Jelka Šuštar-Vozlič
Drought is an abiotic stress that strongly influences plant growth, development and productivity. Proteome changes in the stem of the drought-tolerant common bean (Phaseolus vulgaris L.) cultivar Tiber have were when the plants were exposed to drought. Five-week-old plants were subjected to water deficit by withholding irrigation for 7, 12 and 17days, whereas control plants were regularly irrigated. Relative water content (RWC) of leaves, as an indicator of the degree of cell and tissue hydration, showed the highest statistically significant differences between control and drought-stressed plants after 17days of treatment, where RWC remained at 90% for control and declined to 45% for stressed plants...
December 5, 2016: Journal of Plant Physiology
Bálint Jákli, Ershad Tavakol, Merle Tränkner, Mehmet Senbayram, Klaus Dittert
Potassium (K) is crucial for crop growth and is strongly related to stress tolerance and water-use efficiency (WUE). A major physiological effect of K deficiency is the inhibition of net CO2 assimilation (AN) during photosynthesis. Whether this reduction originates from limitations either to photochemical energy conversion or biochemical CO2 fixation or from a limitation to CO2 diffusion through stomata and the leaf mesophyll is debated. In this study, limitations to photosynthetic carbon gain of sunflower (Helianthus annuus L...
December 5, 2016: Journal of Plant Physiology
Na-Na Li, Wen-Jun Qian, Lu Wang, Hong-Li Cao, Xin-Yuan Hao, Ya-Jun Yang, Xin-Chao Wang
Hexokinases (HXKs, EC and fructokinases (FRKs, EC play important roles in carbohydrate metabolism and sugar signaling during the growth and development of plants. However, the HXKs and FRKs in the tea plant (Camellia sinensis) remain largely unknown. In this manuscript, we present the molecular characterization, phylogenetic relationships, conserved domains and expression profiles of four HXK and seven FRK genes of the tea plant. The 11 deduced CsHXK and CsFRK proteins were grouped into six main classes...
November 25, 2016: Journal of Plant Physiology
Dong-Yue Yang, Na-Na Ma, Kun-Yang Zhuang, Shao-Bo Zhu, Zhong-Ming Liu, Xing-Hong Yang
Ascorbate (AsA) is very important in scavenging reactive oxygen species in plants. AsA can reduce photoinhibition by xanthophyll cycle to dissipate excess excitation energy. GGP is an important enzyme in AsA biosynthesis pathway in higher plants. In this study, we cloned a gene, SlGGP-LIKE, that has the same function but different sequence compared with SlGGP. The function of SlGGP-LIKE gene in response to oxidative stress was investigated using transgenic tobacco plants overexpressed SlGGP-LIKE under methyl viologen treatment...
November 25, 2016: Journal of Plant Physiology
Maita Eulalia Ávila Espinosa, Rafael Oliveira Moreira, André Almeida Lima, Solange Aparecida Ságio, Horllys Gomes Barreto, Sara Lazara Pérez Luiz, Carlos Eduardo Aragón Abreu, Ermis Yanes-Paz, Yanelis Capdesuñer Ruíz, Justo Lorenzo González-Olmedo, Antonio Chalfun-Júnior
Natural flowering can cause serious scheduling problems in the pineapple (Ananas comosus) industry and increase harvest costs. Pineapple flowering is thought to be triggered by increased ethylene levels and artificial forcing of pineapple flowering is a common practice to promote flowering synchronisation. However, little is known about the early hormonal and molecular changes of pineapple flowering induction and development. Here, we aimed to analyse the molecular, hormonal, and histological changes during artificial pineapple flowering by Ethrel(®)48 treatment...
November 24, 2016: Journal of Plant Physiology
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"