Comparative Study
Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Anti-MAG autoantibodies are increased in Parkinson's disease but not in atypical parkinsonism.

There is emerging evidence that glial cells are involved in the neuropathological process in Parkinson's disease (PD) in addition to degeneration of neuronal structures. Recently, we confirmed the presence of an adaptive immune response against different glial-derived antigens in PD, with a possible role of anti-MAG, anti-MBP and anti-PLP antibodies in the disease progression. The aim of the present study was to assess humoral response against myelin-associated glycoprotein (MAG) in patients with parkinsonism (both idiopathic and atypical) to check whether these antibodies could serve as biomarkers of PD, its severity and progression. Anti-MAG autoantibodies were measured by an ELISA system in 99 PD patients, 33 atypical parkinsonism patients, and 36 control subjects. In PD patients, anti-MAG IgM autoantibodies were significantly higher in comparison to healthy control subjects (p = 0.038). IgM anti-MAG autoantibodies titers were also significantly higher in the whole group of patients with parkinsonism (either idiopathic or atypical) in comparison to healthy control subjects (1.88 ± 0.84 vs 1.70 ± 1.19, p = 0.017). This difference was mainly driven by the PD group, as the atypical parkinsonism group did not differ significantly from the control group in anti-MAG antibody levels (p = 0.51). A negative correlation between anti-MAG levels and disease duration was found in PD patients. Our study provides evidence for an increased production of autoantibodies against a protein of glial origin in PD. The negative correlation between anti-MAG antibodies and disease duration may suggest possible involvement of the immune system in disease progression. Increasing evidence that glia are involved in the neurodegenerative process to a greater extent than previously thought may turn out be useful in the search for biomarkers of the neurodegenerative process in PD.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app