Add like
Add dislike
Add to saved papers

Reduced Protein Expression of the Na + /Ca 2+ +K + -Exchanger (SLC24A4) in Apical Plasma Membranes of Maturation Ameloblasts of Fluorotic Mice.

Exposure of forming enamel to fluoride results into formation of hypomineralized enamel. We tested whether enamel hypomineralization was caused by lower expression of the NCKX4/SLC24A4 Ca2+ -transporter by ameloblasts. Three commercial antibodies against NCKX4 were tested on enamel organs of wild-type and Nckx4-null mice, one of which (a mouse monoclonal) was specific. This antibody gave a prominent staining of the apical plasma membranes of maturation ameloblasts, starting at early maturation. The layer of immuno-positive ameloblasts contained narrow gaps without immunostaining or with reduced staining. In fluorotic mouse incisors, the quantity of NCKX4 protein in ameloblasts as assessed by western blotting was not different from that in non-fluorotic ameloblasts. However, immunostaining of the apical plasma membranes of fluorotic ameloblasts was strongly reduced or absent suggesting that trafficking of NCKX4 to the apical membrane was strongly reduced. Exposure to fluoride may reduce NCKX4-mediated transport of Ca2+ by maturation stage ameloblasts which delays ameloblast modulation and reduces enamel mineralization.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app