Add like
Add dislike
Add to saved papers

Analysis of anti-tumor effect and mechanism of GLS1 inhibitor CB-839 in colorectal cancer using a stroma-abundant tumor model.

BACKGROUND: Glutaminase 1 (GLS1), a key enzyme in glutamine metabolism in cancer cells, acts as a tumor promoter and could be a potential therapeutic target. CB-839, a GLS1-specific inhibitor, was developed recently. Herein, we aimed to elucidate the anti-tumor effects and mechanism of action of CB-839 in colorectal cancer (CRC).

METHODS: Using the UCSC Xena public database, we evaluated GLS1 expression in various cancers. Immunostaining for GLS1 was performed on 154 surgically resected human CRC specimens. Subsequently, we examined the GLS1 mRNA expression levels in eight CRC cell lines and evaluated the association between GLS1 expression and CB-839 efficacy. To create a reproducible CRC model with abundant stroma and an allogeneic immune response, we co-transplanted CT26 and stem cells into BALB/c mice and treated them with CB-839. Finally, RNA sequencing of mouse tumors was performed.

RESULTS: Database analysis showed higher GLS1 expression in CRC tissues than in normal colon tissues. Clinical samples from 114 of the 154 patients with CRC showed positive GLS1 expression. GLS1 expression in clinical CRC tissues correlated with vascular invasion. CB-839 treatment inhibited cancer cell proliferation depending on GLS1 expression in vitro and inhibited tumor growth and metastasis in the CRC mouse model. RNA sequencing revealed that CB-839 treatment inhibited stromal activation, tumor growth, migration, and angiogenesis. These findings were validated through in vitro and in vivo experiments and clinical specimen analysis.

CONCLUSIONS: GLS1 expression in CRC plays important roles in tumor progression. CB-839 has inhibitory effects on cancer proliferation and the tumor microenvironment.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app