Add like
Add dislike
Add to saved papers

Construction and evaluation of near-infrared fluorescent probes for imaging lipid droplet and lysosomal viscosity.

Microenvironmental viscosity is a crucial parameter for biological systems, and its abnormal fluctuations are closely associated with various functional disorders and diseases. However, it is still important and urgent to develop improved near-infrared fluorescent probes for micro-viscosity with dual-organelle targeting properties, low background noise, and high sensitivity. Herein, two BODIPY-based small-molecule fluorescent probes were designed and synthesized, which were explored for their viscosity- and polarity-responsive properties, and were further applied to imaging sub-cellular viscosity in living cells. Interestingly, BSZ-Ph and BSZ-R displayed near-infrared fluorescence (more than 650 nm) and were sensitive to environmental viscosity and polarity due to the introduction of a benzothiazole at the 2-position and electron-rich aniline groups at the 5-position of the BODIPY core, respectively. The fluorescence intensity increased exponentially with the viscosity changes. Furthermore, the probe BSZ-Ph could successfully target lipid droplets and image cellular viscosity changes by treating lipopolysaccharides (LPS) and nystatin. Comparatively, the probe BSZ-R could successfully target the dual organelles of lipid droplets and lysosomes and image cellular viscosity changes by treating LPS and monensin. Therefore, in this work, we reported two new BODIPY-based near-infrared fluorescent probes, BSZ-Ph and BSZ-R, for cellular viscosity imaging, which could target lipid droplets and the dual organelles of lysosomes and lipid droplets, respectively. The study could provide a reference for the future development of fluorescent probes for viscosity in lipid droplets and lysosomes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app