Add like
Add dislike
Add to saved papers

Enhanced Spatial Fuzzy C-Means Algorithm for Brain Tissue Segmentation in T1 Images.

Neuroinformatics 2024 April 25
Magnetic Resonance Imaging (MRI) plays an important role in neurology, particularly in the precise segmentation of brain tissues. Accurate segmentation is crucial for diagnosing brain injuries and neurodegenerative conditions. We introduce an Enhanced Spatial Fuzzy C-means (esFCM) algorithm for 3D T1 MRI segmentation to three tissues, i.e. White Matter (WM), Gray Matter (GM), and Cerebrospinal Fluid (CSF). The esFCM employs a weighted least square algorithm utilizing the Structural Similarity Index (SSIM) for polynomial bias field correction. It also takes advantage of the information from the membership function of the last iteration to compute neighborhood impact. This strategic refinement enhances the algorithm's adaptability to complex image structures, effectively addressing challenges such as intensity irregularities and contributing to heightened segmentation accuracy. We compare the segmentation accuracy of esFCM against four variants of FCM, Gaussian Mixture Model (GMM) and FSL and ANTs algorithms using four various dataset, employing three measurement criteria. Comparative assessments underscore esFCM's superior performance, particularly in scenarios involving added noise and bias fields.The obtained results emphasize the significant potential of the proposed method in the segmentation of MRI images.

Full text links

We have located open access text paper links.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app