Add like
Add dislike
Add to saved papers

Gelatin nanocarriers assembled by a self-immolative cross-linker for targeted cancer therapy.

With a number of outstanding properties, gelatin is an ideal candidate for assembling nanoplatforms in biomedical applications. Generally, gelatin nanocarriers are cross-linked by aldehydes to improve their stability in water solution. However, aldehydes could cause multiple toxicities and their cross-linking products are uncontrollable. Here, we first used a self-immolative cross-linker to assemble gelatin nanocarriers for the controlled release of drugs and targeted cancer therapy. The cross-linker contains a disulphide bridge and two symmetrical succinimidyl-esters, endowing it with multiple functions: 1) to cross-link the gelatin nanocarriers and thus improve their stability in water; 2) to conjugate the drug and tumor-targeting ligands with nanocarriers through covalent linkage; 3) to redox-responsively degrade the nanocarriers through hydrolysis of disulphide bridge; and 4) to produce traceless drug molecules through self-immolative reaction. Good biocompatibility and controllable drug release were demonstrated by in vitro experiments. Both qualitative and quantitative analyses confirmed the intracellular uptake of the nanocarriers by using doxorubicin (DOX) as a drug model and phenylboronic acid (PBA) as the targeting ligand. In vivo results demonstrated high therapeutic efficiency and low toxic side effects of the DOX loaded nanocarriers against artificial liver tumors.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app