Add like
Add dislike
Add to saved papers

Inhibition of Golgi stress alleviates sepsis-induced cardiomyopathy by reducing inflammation and apoptosis.

BACKGROUND: Sepsis is often accompanied by multiple organ dysfunction, in which the incidence of cardiac injury is about 60%, and is closely related to high mortality. Recent studies have shown that Golgi stress is involved in liver injury, kidney injury, and lung injury in sepsis. However, whether it is one of the key mechanisms of sepsis-induced cardiomyopathy (SIC) is still unclear. The aim of this study is to investigate whether Golgi stress mediates SIC and the specific mechanism.

METHODS: Sepsis model of male C57BL/6J mice was established by cecal ligation and puncture. To observe the effect of Golgi stress on SIC, mice were injected with Golgi stimulant (Brefeldin A) or Golgi inhibitor (Glutathione), respectively. The 7-day survival rate of mice were recorded, and myocardial injury indicators including cardiac function, myocardial enzymes, myocardial pathological tissue score, myocardial inflammatory factors, and apoptosis were detected. The morphology of Golgi was observed by immunofluorescence, and the Golgi stress indices including GM-130, GOLPH3 and Goligin97 were detected by WB and qPCR.

RESULTS: After CLP, the cardiac function of mice was impaired and the levels of myocardial enzymes were significantly increased. Golgi stress was accompanied by increased myocardial inflammation and apoptosis. Moreover, the expressions of morphological proteins GM-130 and Golgin97 were decreased, and the expression of stress protein GOLPH3 was increased. In addition, Brefeldin A increased 7-day mortality and the above indicators in mice. The use of glutathione improves all of the above indicators.

CONCLUSION: Golgi stress mediates SIC, and the inhibition of Golgi stress can improve SIC by inhibiting apoptosis and inflammation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app