Add like
Add dislike
Add to saved papers

Encasing Few-Layer MoS 2 within 2D Ordered Cubic Graphitic Cages to Smooth Trapping-Conversion of Lithium Polysulfides for Dendrite-Free Lithium-Sulfur Batteries.

Small 2024 April 23
The industrialization of lithium-sulfur (Li-S) batteries faces challenges due to the shuttling effect of lithium polysulfides (LiPSs) and the growth of lithium dendrites. To address these issues, a simple and scalable method is proposed to synthesize 2D membranes comprising a single layer of cubic graphitic cages encased with few-layer, curved MoS2 . The distinctive 2D architecture is achieved by confining the epitaxial growth of MoS2 within the open cages of a 2D-ordered mesoporous graphitic framework (MGF), resulting in MoS2 @MGF heterostructures with abundant sulfur vacancies. The experimental and theoretical studies establish that these MoS2 @MGF membranes can act as a multifunctional interlayer in Li-S batteries to boost their comprehensive performance. The inclusion of the MoS2 @MGF interlayer facilitates the trapping and conversion kinetics of LiPSs, preventing their shuttling effect, while simultaneously promoting uniform lithium deposition to inhibit dendrite growth. As a result, Li-S batteries with the MoS2 @MGF interlayer exhibit high electrochemical performance even under high sulfur loading and lean electrolyte conditions. This work highlights the potential of designing advanced MoS2 -encased heterostructures as interlayers, offering a viable solution to the current limitations plaguing Li-S batteries.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app