Journal Article
Review
Add like
Add dislike
Add to saved papers

Recent Advances in Fluorescent Theranostics for Alzheimer's Disease: A Comprehensive Survey on Design, Synthesis, and Properties.

ACS Omega 2024 March 27
Alzheimer's disease (AD) is the most common form of neurodegenerative dementia that is rapidly becoming a major health problem, especially in developed countries because of their increasing life expectancy. Two main problems are often associated with the disease: (i) the absence of a widely accessible "gold-standard" for early diagnosis and (ii) lack of effective therapies with disease-modifying effects. The recent success of the monoclonal antibody lecanemab played an important role not only in clarifying a possible druggable pathway but also in spelling the revival of small molecule drug discovery. Unlike bulky biologics, small molecules are structurally less complex, generally cheaper, and compatible with at-home oral consumption, making it feasible for people to start their drug regimen early and stay on it longer. In this sense, small-molecule near-infrared fluorescent theranostics have been gaining more and more attention from the scientific community, as they have the potential to simultaneously provide diagnostic outputs and deliver therapeutic action, paving the way toward personalized medicine in AD patients. They also have the potential to shift the diagnostic "status-quo" from expensive and limited-access PET radiotracers toward inexpensive and handy imaging tools widely available for primary patient screening and preclinical animal studies. Herein, we review the most recent advances in the field of fluorescent theranostics for Alzheimer's disease, detailing their design strategies, synthetic approaches and imaging and therapeutic properties in vitro and in vivo . With this Review, we intend to provide a milestone in the acquired knowledge in the field of AD theranostics, encouraging the future development of properly designed theranostic compounds with improved chances to reach clinical applications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app