Journal Article
Review
Add like
Add dislike
Add to saved papers

Chemical Scaffolds for the Clinical Development of Mutant-Selective and Reversible Fourth-Generation EGFR-TKIs in NSCLC.

ACS Chemical Biology 2024 April 20
In nonsmall cell lung cancer (NSCLC), as well as in other tumors, the targeted therapy is mainly represented by tyrosine kinase inhibitors (TKIs), small molecules able to target oncogenic driver alterations affecting the gene encoding the epidermal growth factor receptor (EGFR). Up to now, several different TKIs have been developed. However, cancer cells showed an incredible adaptive tumor response to the inhibition of the sequentially mutated EGFR (EGFRM+), triggering the need to explore novel pharmacochemical strategies. This Review summarizes the recent efforts in the development of new reversible next-generation EGFR TKIs to fight the resistance against T790M and C797S mutations. Specifically, after giving an overview of the role of the EGFR's signaling pathways in cancer progression, we are going to discuss the most relevant approved drugs and drug candidates in terms of chemical structure, binding modalities, and their potency and selectivity against the mutated EGFR over the wild-type form. This could provide important guidelines and rationale for the discovery and iterative development of new drugs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app