Add like
Add dislike
Add to saved papers

Heteroatom Promoted Polyhexagonal Saddle-Shaped Molecular Structure and Its Supramolecular Coassembly with C60.

Molecules with curved architecture can exhibit unique opto-electronic properties due to the concave-convex π-surface. However, synthesizing negatively curved saddle-shaped aromatic systems has been challenging due to the internal structural strain. Herein, we report the facile synthesis of two polyhexagonal molecular systems, 1 and 2, with saddle shape geometry by judiciously varying the aromatic moiety, avoiding the harsh synthetic methods as that of heptagonal aromatic saddle systems. The unique geometry preferences of B, N, and S furnish suitable curvature to the molecules, featuring saddle shape. The saddle geometry also enables them to interact with fullerene C60, and the supramolecular interactions of fullerene C60with 1 and 2 modify their optoelectronic properties. Crystal structure analysis reveals that 1, with a small π-surface, forms a double columnar array of fullerenes in the solid state. In contrast, 2 with a large π-surface produces a supramolecular capsule entrapping discrete fullerene dimer. The intermolecular interactions between B, N, S, and the aryl-π surface of the host and C60 guest are the stabilizing factors for creating these supramolecular structures. Comprehensive computational, optical, electrochemical, and Raman spectroscopic studies establish the charge transfer interactions between B-N doped heterocycle host and fullerene C60 guest.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app