Add like
Add dislike
Add to saved papers

Phonon-mediated ultrafast energy- and momentum-resolved hole dynamics in monolayer black phosphorus.

The electron-phonon scattering plays a crucial role in determining the electronic, transport, optical, and thermal properties of materials. Here, we employ a non-Markovian stochastic Schrödinger equation (NMSSE) in momentum space, together with ab initio calculations for energy bands and electron-phonon interactions, to reveal the phonon-mediated ultrafast hole relaxation dynamics in the valence bands of monolayer black phosphorus. Our numerical simulations show that the hole can initially remain in the high-energy valence bands for more than 100 fs due to the weak interband scatterings, and its energy relaxation follows single-exponential decay toward the valence band maximum after scattering into low-energy valence bands. The total relaxation time of holes is much longer than that of electrons in the conduction band. This suggests that harnessing the excess energy of holes may be more effective than that of electrons. Compared to the semiclassical Boltzmann equation based on a hopping model, the NMSSE highlights the persistence of quantum coherence for a long time, which significantly impacts the relaxation dynamics. These findings complement the understanding of hot carrier relaxation dynamics in two-dimensional materials and may offer novel insights into harnessing hole energy in photocatalysis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app