Add like
Add dislike
Add to saved papers

MCAN: Multimodal Causal Adversarial Networks for Dynamic Effective Connectivity Learning from fMRI and EEG Data.

Dynamic effective connectivity (DEC) is the accumulation of effective connectivity in the time dimension, which can describe the continuous neural activities in the brain. Recently, learning DEC from functional magnetic resonance imaging (fMRI) and electroencephalography (EEG) data has attracted the attention of neuroinformatics researchers. However, the current methods fail to consider the gap between the fMRI and EEG modality, which can not precisely learn the DEC network from multimodal data. In this paper, we propose a multimodal causal adversarial network for DEC learning, named MCAN. The MCAN contains two modules: multimodal causal generator and multimodal causal discriminator. First, MCAN employs a multimodal causal generator with an attention-guided layer to produce a posterior signal and output a set of DEC networks. Then, the proposed method uses a multimodal causal discriminator to unsupervised calculate the joint gradient, which directs the update of the whole network. The experimental results on simulated data sets show that MCAN is superior to other state-of-the-art methods in learning the network structure of DEC and can effectively estimate the brain states. The experimental results on real data sets show that MCAN can better reveal abnormal patterns of brain activity and has good application potential in brain network analysis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app