Add like
Add dislike
Add to saved papers

Effects of fresh-salt water interaction on spatial variations of soil organic carbon in reed wetland of Yellow River Estuary.

Estuarine wetlands exhibit significant interaction between fresh and salt water, with long-term carbon sequestration capability. We set up 60 sampling sites in the reed wetlands of the fresh-salt water interaction zone of the Yellow River Estuary, covering four different zones of the weak-intensity fresh-salt water interaction zone (WIZ), medium-intensity fresh-salt water interaction zone (MIZ), high-intensity interaction fresh-salt water zone (HIZ) and strong-intensity fresh-salt water interaction zone (SIZ). We investigated how fresh-salt water interaction affected the spatial variation of soil organic carbon (SOC) storage. The results showed that the area of reed wetland accounted for 17.8% of the total area of the fresh-salt water interaction zone the Yellow River Estuary, which mainly distributed in the WIZ and MIZ. The SOC content of reed wetland in the fresh-salt water interaction zone ranged from 1.09 to 3.65 g·kg-1 , the SOC density was between 1.85-5.84 kg·m-2 , and the SOC storage was (17.32±3.64)×104 t. The SOC content and SOC density decreased with increasing fresh-salt water interaction. There were significant differences in surface SOC content between different subzones of the fresh-salt water interaction zone. The surface SOC content decreased significantly with the increases of fresh-salt water interaction intensity. SOC density was positively correlated with SOC, TN, NH4 + -N, and biomass, but negatively correlated with salt ions, soil bulk density, pH, and EC. SOC storage in the 0-30 cm soil layer accounted for 50.9%-64.2% of that in the 0-60 cm soil layer, while SOC storage in the 0-60 cm soil layer occupied 19.1%-37.7% of that in the 0-400 cm soil layer. The results could provide a scientific basis for accurately evaluating SOC storage of estuarine wetlands, improving carbon sink function and wetland management.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app