Add like
Add dislike
Add to saved papers

Functional meniscus reconstruction with biological and biomechanical heterogeneities through topological self-induction of stem cells.

Meniscus injury is one of the most common sports injuries within the knee joint, which is also a crucial pathogenic factor for osteoarthritis (OA). The current meniscus substitution products are far from able to restore meniscal biofunctions due to the inability to reconstruct the gradient heterogeneity of natural meniscus from biological and biomechanical perspectives. Here, inspired by the topology self-induced effect and native meniscus microstructure, we present an innovative tissue-engineered meniscus (TEM) with a unique gradient-sized diamond-pored microstructure (GSDP-TEM) through dual-stage temperature control 3D-printing system based on the mechanical/biocompatibility compatible high Mw poly(ε-caprolactone) (PCL). Biologically, the unique gradient microtopology allows the seeded mesenchymal stem cells with spatially heterogeneous differentiation, triggering gradient transition of the extracellular matrix (ECM) from the inside out. Biomechanically, GSDP-TEM presents excellent circumferential tensile modulus and load transmission ability similar to the natural meniscus. After implantation in rabbit knee, GSDP-TEM induces the regeneration of biomimetic heterogeneous neomeniscus and efficiently alleviates joint degeneration. This study provides an innovative strategy for functional meniscus reconstruction. Topological self-induced cell differentiation and biomechanical property also provides a simple and effective solution for other complex heterogeneous structure reconstructions in the human body and possesses high clinical translational potential.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app