Add like
Add dislike
Add to saved papers

Rational synthesis of a heparan sulfate saccharide that promotes the activity of BMP2.

Heparan sulfate (HS) is a glycosaminoglycan (GAG) found throughout nature and is involved in a wide range of functions including modulation of cell signalling via sequestration of growth factors. Current consensus is that the specificity of HS motifs for protein binding are individual for each protein. Given the structural complexity of HS the synthesis of libraries of these compounds to probe this is not trivial. Herein we present the synthesis of an HS decamer, the design of which was undertaken rationally from previously published data for HS binding to the growth factor BMP-2. The biological activity of this HS decamer was assessed in vitro, showing that it had the ability to both bind BMP-2 and increase its thermal stability as well as enhancing the bioactivity of BMP-2 in vitro in C2C12 cells. At the same time no undesired anticoagulant effect was observed. This decamer was then analysed in vivo in a rabbit model where higher bone formation, bone mineral density (BMD) and trabecular thickness were observed over an empty defect or collagen implant alone. This indicated that the HS decamer was effective in promoting bone regeneration in vivo.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app